
REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-98-

Public reporting burden for this collection of information is estimated to average 1 hour per response, includi -" ,gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send come gallection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directora way, Suite
1204, Arlington, VA 222024302, and to the Office of management and Budget, Paperwork Reduction Project

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REP,....

May 1997 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Turbulent Coagulation of Particles Smaller than the Length Scales of Turbulence
and Equilibrium Sorption of Phenanthrene to Clay: Implications for Pollutant
Transport in the Estuarine Water Column
6. AUTHORS

Brett Kenneth Brunk
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Cornell University REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AFOSR/NI AGENCY REPORT NUMBER

110 Duncan Avenue, Room B-115
Boiling Air Force Base, DC 20332-8080

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release

13. ABSTRACT (Maximum 200 words)

See attachment

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

-. U.Standard Form 298 (Rev. 2-89)
])TIC QUA~I~Y INSPE± .J.U7 J 3 Prescrbed by ANSI Std. 239.18

Designed using WordPerfect 6.1, AFOSRIXPP, Oct 96



TURBULENT COAGULATION OF PARTICLES SMALLER THAN

THE LENGTH SCALES OF TURBULENCE AND EQUILIBRIUM

SORPTION OF PHENANTHRENE TO CLAY: IMPLICATIONS FOR

POLLUTANT TRANSPORT IN THE ESTUARINE WATER COLUMN

:""ARCH (AFSC)

:'v'.: wed and is

' :i '5:• ; .. .. : ..}JJ L L

A Dissertation

Presented to the Faculty of the Graduate School'

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

19980430 053
by

Brett Kenneth Brunk

May 1997

~DTIC QUALrrY flmuzum z



© 1997, Brett Kenneth Brunk



TURBULENT COAGULATION OF PARTICLES SMALLER THAN

THE LENGTH SCALES OF TURBULENCE AND EQUILIBRIUM

SORPTION OF PHENANTHRENE TO CLAY: IMPLICATIONS FOR

POLLUTANT TRANSPORT IN THE ESTUARINE WATER COLUMN

Brett Kenneth Brunk, Ph.D.

Cornell University 1997

Pollutant and particle transport in estuaries is affected by a

multitude of physical, chemical and biological processes. In this research

the importance of equilibrium sorption and turbulent coagulation were

studied.

Sorption in estuaries was modeled using phenanthrene, bacterial

extracellular polymer and kaolinite clay as surrogates for a hydrophobic

organic pollutant, dissolved organic matter and inorganic suspended

sediment, respectively. Experiments over a range of estuarine salinities

showed that ionic strength had the largest effect on the extent of sorption,

while the effect of extracellular polymer coatings on the mineral surfaces

was insignificant. Further calculations using typical estuarine suspended

sediment concentrations indicated that equilibrium sorption could not fully

account for the solid/solution phase distribution of hydrophobic organic

compounds in the estuarine water column.

For particles that are small compared to the length scales of

turbulence, the rate of coagulation is related to the dynamics of the smallest

turbulent eddies since they have the highest shear rate. Experimental and

theoretical effort focused on determining the coagulation rate of spherical



particles in isotropic turbulence. A pair diffusion approximation valid for

rapidly fluctuating flows was used to calculate the rate of coagulation in a

randomly varying isotropic linear flow field. Dynamic simulations of

particle coagulation in Gaussian turbulence were computed over a range of

representative values of particle-particle interactions (i.e, hydrodynamic

interactions and van der Waals attraction) and total strain (i.e., the product

of the strain rate and its time scale). The computed coagulation rates for

isotropic turbulence differed from analytical approximations valid at large

and small total strain. As expected, particle interactions were found to be

significant. Experimental measurements of coagulation in grid-generated

turbulence were obtained by measuring the loss of singlet particles from an

initially monodisperse suspension as a function of turbulence intensity.

Model predictions based on the particle Hamaker constant and spatial

distribution of turbulence in the reactor agreed well with the experiments

without the use of any fitting parameters. The close agreement of

simulations and observations indicate the numerical model has successfully

captured the relevant physics that governs the aggregation of colloidal

particles in turbulent flows. This work is the first successful description of

turbulent coagulation. Given the ubiquity of turbulent suspensions in

engineered and natural systems, the ability to quantitatively describe

particle behavior under these conditions is expected to have considerable

utility.
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CHAPTER 1:

INTRODUCTION

Understanding anthropogenic impacts on the environment lies at the

heart of much of the research interest that is focused on estuaries. There at

the boundary between rivers and the ocean, spatial and temporal changes

in the physical, biological, and chemical characteristics of the aqueous

phase lead to a complex network of competing transport and

transformation processes that govern the fate of pollutants and particles

(see for example, O'Melia, 1995; McCave, 1984; Rogers, 1993; Officer &

Lynch, 1989). This research focuses on two of these processes:

hydrophobic organic pollutant equilibrium sorption onto colloidal solids in

the estuarine water column and turbulent shear-induced coagulation of

colloids.

Depending on the relative strength of tidal forces compared with

river discharge, a variety of saline structures can develop in estuaries.

Systems with weak tidal mixing are highly stratified as freshwater

discharged from the river flows over the more dense marine water. As

tidal energy increases, the vertical salinity gradients decrease and the

estuary becomes partially mixed and eventually vertically homogeneous

(Fischer et al., 1979). Stratified estuaries such as that depicted in Figure

1.1 provide a conceptual starting point for this work. In Figure 1.1 fresh

water flows on top of a marine water intrusion. A sharp salinity gradient or

1



2

'Turbulence

! ', intensity
0

• ,"

' Salinity
i

Magnitude

River Freshwater .

Figure 1.1: Sketch of a stratified estuary. The cross-sectional profile
(denoted A-A') shows the typical vertical distribution of salinity (solid line)
and turbulence intensity (dashed line) found in stratified estuaries.
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pycnocline separates the two fluid layers. Turbulence in the stratified

estuary is generated in the freshwater layer by wind mixing, in the saline

layer by tidal motions and/or bottom roughness and at the pycnocline

through shear instabilities. The turbulence leads to mixing and entrainment

of salt water across the pycnocline; therefore, the salinity of the upper layer

increases with distance toward the ocean.

Estuaries are frequently contaminated with anthropogenic pollutants

since they are often the locations of concentrated industrial development,

coastal cities and ports. Both inorganic pollutants, such as heavy metals,

and organic chemicals, such as the polycyclic aromatic hydrocarbons

(PAHs) examined in this study, contaminate the estuarine environment.

While there is a consensus that estuaries serve as a sink for pollutants and

particles (Bates et al., 1987; Murphy et al., 1988; Sagemann et al., 1996),

the combinations of physical and chemical processes that govern the rate

and extent of estuarine particle and pollutant trapping are inadequately

understood.

A well-known example of the coupling between physical and

chemical processes is the relationship between fresh water/marine water

mixing and coagulation of colloids (O'Melia, 1995). Since colloidal

particles in natural systems are typically negatively charged (Hunter &

Liss, 1979), the low ionic strength of fresh water leads to a diffuse cationic

double layer that produces a significant particle repulsion when two

particles approach one another. Because of the significant double layer

repulsion, fresh water particles are usually stable or resistant to

aggregation. Colloid stability decreases substantially when salt water, with
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its high ionic strength, is mixed into the fresh water and compression of the

double layer occurs. Hence, as fresh water mixes with sea water in the

estuary, particle-particle repulsion is reduced allowing coagulation

reactions to transfer suspended sediment from the non-settling colloidal

fraction to large flocs that can settle out of the water column at appreciable

rates. In summary, alterations in solution ionic strength brought on by

mixing at the fresh/salt water interface ultimately lead to enhanced

deposition of coagulated riverine suspended sediment.

Chemical reactions such as hydrophobic organic compound sorption

are also strongly influenced by changes in salinity (Rogers, 1993). In this

case, high salinity promotes "salting out" of hydrophobic compounds as

their aqueous activity coefficients increase (Karickhoff, 1984). Finally, the

presence of plankton and algal blooms in estuaries can alter the phase

distribution of pollutants (Prahl & Carpenter, 1979) and, in turn, the

abundance and distribution of the biota are regulated by the chemistry and

circulation patterns of the estuary (Eldridge & Sieracki, 1993).

Spatial variation in rates of mixing, flow intensity and salinity can

clearly alter the fate of dissolved and suspended material in the estuary.

While the interplay between chemical, biological and physical processes is

grossly understood, a mechanistic understanding of many of these

interactions remains elusive. This work attempts to improve our

understanding of two abiotic processes affecting pollutant and particle

transport, namely, equilibrium sorption to suspended inorganic sediment

and turbulent shear coagulation. Equilibrium sorption in the water column

is evaluated for the case of hydrophobic organic compounds (more
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specifically for the polycyclic aromatic hydrocarbon compound, PAH,

phenanthrene) and the importance of sorption in controlling the distribution

of pollutants between the particulate and aqueous phase is deduced as a

function of salinity and the presence of dissolved organic matter. Particle

coagulation due to turbulent shear is expected to be a critical step leading

to the formation of flocs that settle to the estuarine sediments. In this

thesis, a combination of theory, experiments and simulations are used to

investigate rates of turbulent shear coagulation for an ideal isotropic

turbulent flow.

1.1 Processes affecting pollutant and particle fate in estuaries

A number of processes, some of which are illustrated in Figure 1.2,

control the fate and transport of pollutants in an estuary. These include

transport mechanisms such as turbulent diffusion, particle settling, mean

advection to the ocean and, entrainment, as well as reactions, such as

coagulation and sorption. In this subsection results from dimensional

analysis and physical arguments are used to estimate the time scales of

these transformation processes so that their relative importance can be

assessed. Using the scaling arguments as a foundation, a two-step process

is proposed to control the trapping of hydrophobic organic compounds

introduced into the aqueous phase of the estuary. In this process organic

pollutants are rapidly sorbed to suspended particulates and these particles

undergo coagulation and subsequent settling because of changes in the

solution ionic strength.
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Figure 1.2: Schematic illustrating the major processes affecting pollutant
and particle transport in stratified estuaries. The characteristic time for
each process is shown normalized to the time for bulk mixing in the top
and bottom fluid layers.
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Consider a stratified estuary scenario in which an initially dissolved

hydrophobic organic pollutant and colloidal solids are introduced by

riverine flow into the upper freshwater layer. As the estuary widens, the

mean flow slows and the vertical particle flux increases. Wind mixing in

the estuary provides energy input generating turbulent surface waters that

promote particle contact and entrain the deeper and more dense salt water

layer into the freshwater layer. The entrainment of salt water increases the

solution ionic strength and that destabilizes the particles and further

enhances the rate of aggregation. The large particles that subsequently

form rapidly settle to the estuarine bottom.

Figure 1.2 summarizes the characteristic times of the pollutant

transport mechanisms relative to turbulent transport in the fresh or salt

water layer. For this analysis we consider typical estuarine turbulence

conditions where the turbulent dissipation rates range from 0.002 to 0.7

cm2/s3 and root mean square (rms) turbulent velocity varies between 1 and

7 cm/s (Krone, 1978). In the analysis, suspended sediment diameters

range from 1 to 100 gm, their density is assumed to be 2 g/cn 3 (McCave,

1984) and the particle concentration is 1 g/L (Campbell & Spinrad, 1987;

Gibbs, 1977; Rogers, 1993). Partitioning of hydrophobic organic

compounds between an aqueous phase and an inorganic colloid is generally

governed by a physical sorption process. Barring significant mass

transport limitations, physical sorption is typically a rapid reaction that

occurs on times scales of milliseconds to seconds (Weber et al., 1991).

Consequently, pollutant sorption to suspended sediment is expected to be
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orders of magnitude faster than bulk mixing (see Figure 1.2) suggesting

that the sorption process can be treated as if it is at equilibrium.

The stable density interface in the estuary acts as an impedance to

freshwater/salt water mixing. The rate of salt water entrainment into a

turbulent freshwater layer is related to the local value of the Richardson

number:

Ri= ApgL
-•/2 (1.1)
PU

where Ap/p is the density difference between the fresh and salt water

layers divided by the average density, g is the acceleration due to gravity,

u' is the root mean square (nns) velocity of turbulence and, L is the integral

length scale of turbulence. The integral length scale of turbulence is the

characteristic size of the largest turbulent eddies within the turbulent fluid.

The relative importance of entrainment compared with turbulent transport

is given by (Breidenthal, 1992):

Tentrainment Ri312 (1.2)
T ..mixing

For fresh water (zO ppt salinity) over sea water (;36 ppt salinity), this

leads to a relatively slow time scale for entrainment as shown in Figure 1.2.

Settling is the other important transport process and the ratio of the

rms turbulent velocity to the particle settling velocity describes the relative

importance of particle settling. In this analysis spherical particles are

assumed, so Stokes settling velocity may be used. For small particles with
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diameters near 1 gm, settling is very slow; however, since the relative

importance of settling increases with the square of the particle diameter, it

can become significant for particles on the order of 10 to 100 gm in

diameter.

Mean advection to the ocean varies widely and it depends primarily

on the length of the estuary and magnitude of the mean velocity. These

order of magnitude calculations assume a estuary length to depth ratio of

100-1000 (see for instance, Bates et al., 1987).

Brownian motion, turbulent shear, and differential settling are all

mechanisms that can lead to colloid aggregation. Using the coagulation

rate expressions provided by Pearson et al. (1984) the importance of these

coagulation mechanisms is compared with bulk mixing. Whatever the

dominant coagulation mechanism, coagulation is a weak process that

occurs about 100 times slower than turbulent mixing of the stratified fluid

layer. The coagulation mechanism that controls the coagulation rate

changes across the particle size spectrum with Brownian motion being

important for diameters near 1 gim, turbulent shear controlling for 1 to 10

[tm diameter particles and differential settling becoming dominant for size

particles larger than about 10 gm in diameter and with a characteristic size

difference of 10 jim.

Considering these transformation processes permits the development

of a sequence of plausible mechanisms that control particle and pollutant

trapping in a stratified estuary. Pollutants and particles in the fresh water

phase rapidly come to chemical equilibrium and are mixed throughout the

freshwater layer. In general, colloidal particles are too fine to settle
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appreciably; thus coagulation followed by sedimentation of the large flocs

is likely to be the dominant particle removal pathway. Entrainment of salt

from the estuarine bottom water layer destabilizes colloidal particles

allowing them to aggregate into large flocs with significant settling

velocities. As a first step, Brownian motion causes the coagulation of

submicron particles. Floc size is further increased via the mechanism of

turbulent shear coagulation. Eventually, the particle aggregates become

large enough to sweep out smaller particles via differential settling

flocculation.

Jensen (1997) provides an experimental example illustrating how

coagulation can augment suspended sediment vertical flux. In this work, a

two-layer stratified fluid was created in a laboratory water column

containing vertically spaced oscillating grids for turbulence generation (see

Chapter 5 for details on the design of the experimental apparatus). A

particle slurry was introduced into the upper freshwater layer and the

evolution of the suspended sediment concentration was monitored as a

function of time, turbulence intensity and particle size. Mixing in the upper

fresh water layer was fast compared with settling so the experiments

reproduced the relative rates shown in Figure 1.2. Model predictions for

the evolution of suspended sediment concentration in the well-mixed upper

layer were based on a mass balance that incorporated the effect of particle

settling through the pycnocline. Shown in Figure 1.3 are experimental and

model results for coagulating and non-coagulating suspensions. Plotted in

Figure 1.3 is the relative concentration (C/C0) versus time, in which the

time has been normalized with the characteristic settling time of the
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Figure 1.3: Evolution of the suspended sediment concentration in the
upper layer of a stratified system. The particle concentration relative to the
initial value is plotted against the normalized time. To = V/Aw is the
characteristic settling time of the primary (non-aggregated) particles where
V is the upper layer volume, A is the horizontal cross sectional area and w
is the particle settling velocity (after Jensen, 1997).
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primary particles: To = V/wA where V is the tank volume, A is the reactor

horizontal cross sectional area and w is the settling velocity of the primary

particles. The crosses represent experimental measurements for non-

cohesive sediment and the solid line is the model prediction. The circles

are data collected for kaolinite, a coagulating clay with an initial diameter

of 1.5 gim. The relative concentration of the coagulating particles

decreased more rapidly than the stable suspension indicating that

coagulation created large flocs that fell faster than the non-coagulated

particles. As shown in Figure 1.3, the concentration of the destabilized

particles reached 40% of its initial value ten times faster than the non-

coagulating sediment. Clearly, coagulation can dramatically alter the

vertical flux of sediment in the estuarine environment. Fitting the kaolinite

data with a mass balance modified to reflect the size of the floc particles

(shown by the dashed line) suggested that the effective mean particle

diameter had to increase about 3.5 times for the particles to settle at the

observed rate.

1.2 Research Objectives

Estuaries are purported to be sinks for river-borne pollutants. Given

the time scales discussed above, a two-fold mechanism for pollutant

trapping, including equilibrium sorption of pollutants to suspended

sediment followed by the coagulation and settling of the particulates, is

proposed to control estuarine pollutant fate. This research addresses both

the issues of sorption and coagulation by:



13

* Investigating the role of equilibrium sorption in controlling the phase

distribution of hydrophobic pollutants in the estuarine water column.

* Investigating coagulation due to turbulent shear through theory,

experiments and computer simulations.

1.2.1 Equilibrium sorption

In Chapter 2 the role of equilibrium sorption in the estuarine

environment is considered using a three-component equilibrium sorption

model consisting of a hydrophobic sorbate, suspended sediment and

dissolved organic matter (DOM). Model surrogates were chosen to mimic

actual estuarine materials. The polycyclic aromatic hydrocarbon,

phenanthrene, represented the hydrophobic pollutant, two types of clay

minerals were used as surrogates for the suspended sediment, and several

recalcitrant organic compounds were selected to mimic DOM.

An experimental program was developed to study the effects of

salinity and DOM coatings on phenanthrene sorption. Past work

conducted predominately by Tipping and coworkers (Tipping, 1981;

Tipping & Heaton, 1983) suggested that DOM will bind to solids as the

concentration of divalent cations such as Ca' 2 is increased. The DOM

coating on the particles would result in a higher effective organic carbon

content, and since the extent of hydrophobic organic compound sorption is

strongly correlated with the sorbent organic carbon content (Karickhoff,

1984), sorption of phenanthrene to the sediment is expected to increase.

Field measurements of phenanthrene in estuarine sediments imply

that the pollutant is predominantly associated with the solid phase

(McGroddy & Farrington, 1995; McGroddy et al., 1996). Using
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experimental sorption data collected for several simulated estuarine

pollutant/sediment/DOM systems, as well as additional sorption studies

from the literature, the role of sorption in controlling pollutant phase

distribution was examined.

1.2.2 Turbulent coagulation

The discussion in Section 1.2 highlights the importance of turbulent

coagulation as the mechanism that transforms non-settling, stable colloids

into larger flocs with appreciable settling fluxes in estuarine environments.

Unfortunately, current models for turbulent coagulation have been

incompletely validated and in some cases are formulated based upon

incorrect assumptions about the turbulent flow field. A major component

of this thesis is focused on developing a physically based model for

turbulent coagulation that can be used to obtain a priori predictions.

In Chapter 3, coagulation in an isotropic random flow is examined

in the limit of small total strain where relative particle transport and

coagulation by the fluctuating flow field can be represented with a pair

diffusion coefficient. While the pair diffusion method only approximates

coagulation in turbulent flows, it can be used as a baseline to which more

realistic simulations of turbulent shear-induced coagulation can be

compared. In addition, the pair diffusion formulation outlined in Chapter 3

was made sufficiently general to have application in other random flows

such as chaotic laminar flows.

Simulations of coagulation in Gaussian isotropic turbulence are

presented in Chapter 4 as a function of the turbulent flow time scales and

the importance of viscous resistance to motion and van der Waals
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attractions is examined. The model assumes that the flow field in the

neighborhood of a pair of coagulating particles controls the rate of

aggregation. Equations of motion that include the effects of a random

linear flow field, hydrodynamic interactions and interparticle forces are

derived. A temporal Fourier series is used to represent the fluctuating

velocity gradient field and particle trajectories calculated in this random

flow are used to compute the coagulation rate.

In the last phase of this research (Chapter 6), the model simulations

presented in Chapter 4 are compared with experimental measurements of

coagulation in grid-stirred turbulence. First the turbulence generating

apparatus is described and characterized (Chapter 5). Steady-state

sediment and turbulence profiles obtained in the apparatus are measured

and successfully compared with theory. These measurements give

confidence that the grid-stirred apparatus can produce nearly homogeneous

turbulence. In Chapter 6 the initial turbulent coagulation rate of

monodisperse polystyrene particles is presented and compared with model

simulations. The spatial distribution of turbulent shear is measured so the

observed coagulation rate can be related to the local distribution of

coagulation rates within the reactor. The coagulation rate of monodisperse

polystyrene particles are measured at several turbulent intensities and

separate Brownian coagulation experiments are used to find the magnitude

of the van der Waals attraction for the polystyrene beads for use in the

numerical model. Conclusions based on the turbulent coagulation and

sorption studies described in Chapters 2 through 6 are summarized in

Chapter 7.
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This thesis utilizes concepts and terminology from a variety of

scientific fields, including: fluid mechanics, hydraulics, turbulence, colloids

and surface science, and surface reactions. The reader is referred to

Appendix A for a listing of general textbooks that can aid in

comprehending the material in this thesis. Also included in Appendix A

are definitions of common fluid mechanics terms used throughout the

chapters.
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CHAPTER 2:

EFFECTS OF SALINITY CHANGES AND THE FORMATION OF

DISSOLVED ORGANIC MATTER COATINGS ON THE

SORPTION OF PHENANTHRENE: IMPLICATIONS FOR

POLLUTANT TRAPPING IN ESTUARIES*

2.1 Introduction

Estuaries are particularly susceptible to environmental abuse since

industrial activity is often concentrated near them. Water quality

management in the estuarine zone, including the assessment and

remediation of contaminated areas, requires techniques to predict the fate

of pollutants discharged into estuaries. Understanding the factors that

affect pollutant trapping within the estuary is an important first step toward

developing comprehensive plans for managing and remediating these

delicate aquatic environments (NRC, 1989).

Studies investigating hydrophobic pollutant transport within

estuaries show that these compounds are not flushed out to sea, but are

transferred to estuarine sediments (Bates et al., 1987, Bouloubassi &

*Reprinted with pennission from BRUNK, B. K., JIRKA, G. H. &

LION, L. W. 1997 Effects of salinity changes and the formation of

dissolved organic matter coatings on the sorption of phenanthrene:

Implications for pollutant trapping in estuaries. Env. Sci. & Tech. 31(1),

119-125. Copyright 1997 American Chemical Society.
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Saliot, 1994; Murphy et al., 1988). Bates et al. (1987) and Murphy et al.

(1988) examined suspended sediment concentrations of polycyclic

aromatic hydrocarbons (PAHs) in a fjord-like estuary near Seattle,

Washington. Large horizontal PAH concentration gradients led Bates et al.

(1987) to conclude that vertical transport dominated PAH distribution.

Similarly, Murphy et al.(1988) concluded that more than 90% of sediment

bound hydrocarbons remained within the estuary. Neither of these

investigations examined the mechanisms that led to the observed pollutant

trapping.

For hydrophobic pollutants, sorption onto particulate matter is one of

the dominate phase-transfer processes affecting their movement and fate in

the aquatic environment (Shian-chee & Gschwend, 1986). Dramatic

changes in sorptive behavior caused by increases in sorbate and sorbent

hydrophobicity brought on through increases in salinity are one possible

explanation for the pollutant trapping observed in estuaries. High ionic

strengths "salt out" hydrophobic compounds causing their effective

sorption coefficients to increase. A recent study of PAR sorption to harbor

sediment found the increase in sorption attributable to increases in ionic

strength to be about 22% (Hegemen et al., 1995), which agrees with

theoretical estimates (Karickhoff, 1984). The effect of ionic strength on

hydrophobic organic compound binding to dissolved macromolecules (such

as humic acid) is more difficult to predict. The magnitude and direction of

the "salt effect" has been observed to be a complicated function of pH,

divalent ion concentration and of the specific organic macromolecule
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studied (Carter & Suffet, 1982; Schlautman & Morgan, 1993; Murphy et

al., 1994).

The formation of hydrophobic dissolved organic matter (DOM)

coatings on suspended sediment in response to solution chemistry changes

might lead to increased pollutant sorption. Studies have shown that at low

ionic strengths (1-30 mM) the addition of divalent cations, such as Mg"2

and Ca+2, enhanced sorption of DOM to solid surfaces (Dempsey &

O'Melia, 1983; Tipping, 1981; Tipping & Heaton, 1983). If these results

are extrapolated to the high salinities, and therefore high ionic strengths,

seen in the estuarine system one might surmise that the removal of DOM

from the dissolved to particulate phase would be enhanced significantly by

the increased concentration of Ca+2 and Mg"2 found in seawater. This

coating of sediment by DOM would effectively raise the organic carbon

content associated with the solid phase and, since the distribution

coefficients of nonionic organic compounds are highly correlated with the

organic content of the sorbent (Karickhoff, 1984), sorption of the

hydrophobic pollutant might be expected to increase.
Using batch isotherm experiments, this research simulated

equilibrium sorptive phenomena in the estuarine environment to better

understand the interplay between hydrophobic pollutants, DOM and

suspended sediment as a function of salinity. Model surrogates were

chosen to simulate actual estuarine materials. The PAH, phenanthrene,

was used as a representative hydrophobic pollutant, DOM was modeled

with an extracellular polymer from a soil bacterial isolate and kaolinite clay

was used as the experimental surrogate for suspended sediment.
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Information gathered from this three-component system was

integrated into a model of pollutant sorption within an estuary. Model

calculations were used to ascertain the effects of salinity and DOM

coatings on phenanthrene sorption and to provide evidence for the relative

importance of sorptive mechanisms in estuarine pollutant trapping.

2.2 Theory

Under many conditions the sorption of hydrophobic pollutants can

be successfully described with a linear equilibrium distribution coefficient:

[Sorbate], = Kd[Sorbate]a (2.1)

where [] denotes solid phase concentrations (g/g solid), []. represents

aqueous phase concentrations (g/ml) and Kd is the distribution coefficient

(ml/g). In the literature, the treatment of sorption to colloidal material has

been handled as both a separate sorbent phase and lumped with the sorbent

in the aqueous phase (see for instance, Bergen et al., 1993; Backhus &

Gschwend, 1990; Allen-King et al., 1995). In this work the sorptive

effects of colloidal suspended sediment and the bulk solid phase are

combined; care has been taken in the experiments so that sorption onto

sediment and onto colloidal material are considered together.

To elucidate the underlying mechanisms leading to enhanced

sorption, a three component equilibrium model (Magee et al., 1991) was

used to represent the PAH (phenanthrene), DOM (extracellular polymer),

solid (kaolinite clay) system. Figure 2.1 shows the three sorption pathways

relating the estuarine surrogates. In this model, sorption of PAH to free
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PAH KPAH DOM

PAH

PAH KDOM KDOKS M

Suspended sediment

Figure 2.1: Schematic of the three component sorption equilibrium model
for a PAH, DOM and solid phase. Arrows indicate sorptive equilibrium
reactions. It was assumed that the PAH would sorb to both free and clay-
bound DOM to the same extent.
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and clay-bound DOM was assumed to be identical. The experimentally

defined sorption coefficients for the binary interactions between PAH,

DOM and solid, were used to derive an "effective" overall sorption

coefficient,Ko, for the distribution of PAH between the aqueous and solid

phases:

Ko- [PA T (2.2)
[PAH]a'

The superscript T indicates that these concentrations include the free PAH

plus the DOM-bound PAL. Combining Equation 2.2 with the equilibrium

distribution relations suggested in Figure 2.1 leads to an expression for Ko:

PAH PAH DOM

K0o =  +KDOMK [DOM] 0  (2.3)PAH o
1+ K~o[DOMDO

where KS' = [PAH]l / [PAH]a, KDOMPAH = [PAH]DoM / [PAH],, K.D°M -

[DOM], / [DOM]a, and []DoM denotes concentrations on the DOM (ex., g/g

extracellular polymer). From Equation 2.3, one can observe that increases

in K,'m caused by cation effects (Dempsey & O'Melia, 1983; Tipping,

1981; Tipping & Heaton, 1983) could lead to higher overall PAH sorption

than that seen without DOM.

The degree of hydrophobic pollutant sorption is linked to its activity

in the aqueous phase. As the activity coefficient of a pollutant increases in

response to increases in ionic strength, pollutant sorption rises (Karickhoff,
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1984). The effect of ionic strength on pollutant hydrophobicity is generally

incorporated into the pollutant's aqueous activity coefficient using an

empirical salting coefficient model (Garrels & Christ, 1965; Whitehouse,

1985):

Y= 0k. (2.4)

where y is the activity coefficient, k, is the salting coefficient (L/mol) and I

is the ionic strength (mol/L). The value of the salting coefficient depends

on the composition of the ionic medium which is taken to be an artificial

saline solution (see Section 2.3) in this chapter. Combining Equations 2.1

and 2.4 results in an expression describing the change in the sorption

coefficient as a function of ionic strength:

Kd 0 Kd0lks1 (2.5)

where the superscript 0 signifies the freshwater (zero ionic strength)

sorption coefficient. Analogous expressions for K,", KDOM"PA, Ks'°M

were used to include "salting out" in Equation 2.3. The resulting equation

for the overall sorption coefficient as a function of solution ionic strength

is:

PAHO 0kA'I + PAHO DOM 0 kPAHDOMkDOMS'I
K0  Ks ' 10: + KDOM K,' , 10(k +k ('[DOM]aKo = (2.6)

1 + K 0  
1 kPAHDOM ]I + K•O 10[DA
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where the superscripts for the salting coefficients refer to the sorbate and

sorbent, respectively.

The experiments described in this chapter were conducted in

aqeuous environments ranging from fresh to marine saline levels. Salinities

in this chapter are reported in ppt. The empirical relation:

I = 0.01986(Salinity), converts from salinity in ppt to ionic strength in

mol/L for the artificial sea water solution used in this work.

It is convenient to consider the sorbed fraction when appraising the

impact of sorption on pollutant trapping in estuaries. The sorbed fraction,

f, is a ratio of the mass of contaminant sorbed to the suspended sediment

to the total mass in the system and it is related to the overall distribution

coefficient by:

KO [suspended sediment],a

Ko[suspended sediment],a + 1

Values of fs greater than 0.5 would suggest that the pollutant was being

trapped since most of the contaminant would be associated with the

suspended sediment phase.

2.3 Experimental Methods

2.3.1 Materials

Phenanthrene was chosen as a model hydrophobic pollutant since it

has been isolated and monitored in field studies that examined pollutant

distributions in estuaries (Bates et al., 1987; Hegemen & Weijden, 1995).

Radiolabeled phenanthrene (9-" 4C, specific activity = 13.1 mCi/mmol,
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Sigma Chemical Co, St. Louis, MO) was placed in a saturater similar to

that designed by Burris and Maclntyre (1985) and dissolved in distilled

deionized water containing 5 mM CaSO 4 and 0.25 wt% NaN3. The CaSO 4

was added to represent a background riverine electrolyte and the NaN3 was

used to inhibit bacterial degradation. Isotope purity was verified by the

manufacturer through HPLC analysis and it was found to be greater than

98% pure.

Commercially available kaolinite (trade name Hydrite 121-S, Dry

Branch Kaolin Co., Dry Branch, GA) was dried at 105'C for at least 24

hours and used without further preparation. The average particle size of

this non-swelling clay was 1.5 jim as determined from analysis with a

Coulter Multisizer II (Coulter Corp., FL) and the organic carbon content of

the kaolinite was determined to be 0.076% + 0.015% (n = 5) as measured

by high temperature combustion (Lecco induction furnace model 777-500,

Lecco Corp.). Bentonite (Aldrich Chemical Co., Milwaukee, WI) was

used for some experiments. This swelling clay was dried at 105'C for 24

hours before use. The organic carbon content was 2.03% + 0.3% (n = 5),

and the average particle diameter was 1.5 jim.

Solutions with salinities ranging from 0 to 30 ppt were made using

an artificial seawater solution described by Hsieh et al. (1985). In this

research the bacterial growth factors included by Hsieh et al. were omitted

and the pH was adjusted to 8.

Many bacteria produce high molecular weight polymers and excrete

them into the environment. These extracellular polymers are resistant to

biodegradation and are a ubiquitous constituent of DOM in natural aquatic
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systems (Chudoba et al., 1986; Underwood et al., 1995). A bacterium

isolated from soil (designated as isolate 9702-M4) was obtained from the

culture collection of Prof. W. C. Ghiorse (Section of Microbiology,

Cornell University). Madsen et al. (1993) describe the coal tar waste site

from which the bacterium was isolated. The isolate is of the Rhizobiaceae

genus (Jenkins, 1996), and it produces a high-molecular-weight amorphous

polysaccharide that has previously been found to interact strongly with

phenanthrene (Dohse & Lion, 1994). To obtain extracellular polymer, the

9702-M4 isolate was grown in a glucose-based growth medium following

the procedure described by Czajka (1995). Dissolved polymer was

separated by centrifugation, purified by dialysis against distilled deionized

water using a 5000 MWCO membrane and freeze-dried. For studies of

polymer sorption to kaolinite, "4C-labeled polymer was produced by adding

"14C-glucose (uniformly labeled, specific activity = 9.1 [tCi/[tmol, ICN

Biomedicals, Irvine, CA) to the nutrient broth. Dried polymer was stored

at -20'C until use. For isothenn studies, concentrated polymer solutions

were prepared by dissolving the freeze dried polymer into a pH = 8

solution containing 5 mM CaSO 4 and 0.25 wt% NaN3. Additional

experiments were perfonred with tannic acid (Aldrich Chemical Co.,

Milwaukee, WI) and alginic acid (Aldrich Chemical Co., Milwaukee, WI)

as surrogates for DOM. Stock solutions of tannic acid were prepared with

5 mM CaSO 4 and 0.25 wt% NaN 3 and adjusted to a pH of 8. Solutions of

alginic acid were only sparingly soluble in Ca÷2 electrolyte and were

prepared in distilled deionized water.
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Further characterization of the materials used may be found in Table

B. 1 of Appendix B.

2.3.2 Isotherm experiments.

Equilibrium batch sorption isotherms were used to characterize the

sorption coefficients of phenanthrene to a solid substrate with and without

DOM and to characterize the sorption coefficient of DOM to the solid

phase. The techniques used to obtain the sorption isotherms, examples of

which are shown in Figure 2.2, are briefly described below. The reader is

directed to the supplementary material in Appendix B for additional details.

2.3.2.1 Dialysis Technique

A modified dialysis teclmique (Carter & Suffet, 1982; Allen-King et

al., 1995) was used to obtain the distribution coefficient for phenanthrene

onto kaolinite clay, Ks". This procedure eliminated the difficulty of

separating the kaolinite clay from the aqueous solution and hence

circumvented what has been termed the "solids effect" (Gschwend &

Shian-chee, 1985). In these experiments, phenanthrene in aqueous and

clay slurry phases was allowed to equilibrate across a dialysis membrane.

A series of long-term experiments performed over 18 days showed that a

6-day equilibration time was more than sufficient to reach stable phenan-

threne concentrations. After equilibration, radioactive phenanthrene in

samples from the aqueous and clay slurry phases was counted on a

Beckman LS9800 liquid scintillation counter (Irvine, CA). By assuming all

phenanthrene sinks were at equilibrium, the relative concentration

difference of phenanthrene between the aqueous phase and the clay slurry
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Figure 2.2: Example sorption isotherms. (a) Phenanthrene sorption to
kaolinite clay as determined by the dialysis techmique for salinities of 0 (0)
and 30 (E0) ppt. (b) Extracellular polymer sorption to kaolinite using the
centrifugation teclnique at 8.2 ppt salinity. (c) Isotherms for sorption of
phenanthrene to extracellular polymer at 0 (0) and 30 (El) ppt as obtained
from fluorescence quenching experiments.
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gave the sorption distribution coefficient. The presence of clay slurry

within the counting samples was shown not to affect the scintillation

results.

Generally, each isotherm experiment consisted of 3 replicates at 4

solids concentrations. Figure 2.2(a) shows typical results obtained at

salinities of 0 and 30 ppt. The slope of a best fit line through the data

yielded the distribution coefficient, K.".

2.3.2.2 Centrifugation Technique

The dialysis procedure could not be used in experiments that

included the extracellular polymer because the molecular weight cutoff of

the dialysis tubing was too small to allow the polymer to pass freely.

Particle separation by centrifugation offered an alternative, albeit a

possibly inaccurate one due to incomplete solid/aqueous phase separation

(Gschwend & Wu, 1985). This method was used to ascertain the

equilibrium distribution coefficient for extracellular polymer sorption to

kaolinite clay and to observe sorption of phenanthrene to clay in the

presence of DOM surrogates. The procedure used followed that of Lion et

al. (1990). Slow desorption of the phenanthrene from the polymer was

found to affect the isotope levels measured by the scintillation counter;

therefore, liquid scintillation counting was repeated daily until the

phenanthrene activity remained constant between successive

measurements. The equilibrium sorption coefficient was obtained from a

mass balance equation which was modified to include corrections for

sorptive bottle losses (Lion et al., 1990).
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Typically, each isotherm utilized 3 replicates of 4 radiolabeled

phenanthrene concentrations. Figure 2.2(b) shows example results for the

sorption of polymer to kaolinite at a salinity of 8.2 ppt. The effect of

incomplete solids separation was ascertained by comparing phenanthrene

to kaolinite distribution coefficients obtained with the centrifugation

protocol to those obtained with the dialysis technique. Results from the

two methods were not significantly different (see Figure 2.3).

2.3.2.3 Fluorescence quenching

Fluorescence quenching experiments (Backhus & Gschwend, 1990;

Gauthier et al., 1986) were used to elucidate the distribution coefficient

between phenanthrene and the extracellular polymer. The procedure

followed that given by Gauthier et al. (1986) with controls to correct for

extracellular polymer fluorescence, inner filter effects, dilution and photo-

bleaching. After equilibration the fluorescence of the phenanthrene was

recorded using an SLM Aminco 8000 spectrofluorimeter with excitation

and emission wavelengths of 288 nm and 364 nm, respectively.

Loss of phenanthrene to container walls was not observed and

significant volatilization of the phenanthrene was not expected over the

time frame of the analysis since the cuvettes were fitted with Teflon® caps.

The Stern-Volmer equation was used to relate the ratio of the fluorescence

intensity to the distribution coefficient for phenanthrene sorbing to

extracellular polymer (Gauthier et al., 1986). Figure 2.2(c) shows example

results at 0 and 30 ppt salinity.
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Figure 2.3: The effect of salinity on the distribution coefficient for
phenanthrene sorption to kaolinite clay. Distribution coefficients obtained
with both the dialysis (0l) and centrifugation (0) techniques are shown.
Error bars represent 95% confidence intervals and the fitted exponential
curve is based upon the empirical salting coefficient model (Equation 2.5).
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2.4 Results And Discussion

2.4.1 Characterization of the overall sorption coefficient for the

phenanthrene -polymer - kaolinite system

2.4.1.1 Phenanthrene to kaolinite equilibrium distribution coefficient

Figure 2.3 shows the effect of salinity on K"~S from isotherms

obtained via the dialysis and centrifugation technique. As expected, the

distribution coefficient increased with salinity, ranging from an average

value of 1.41 ml/g at 0 ppt salinity to 2.08 ml/g at 30 ppt salinity.

Liljestrand and Shimizu (1991) measured the sorption coefficient for

anthracene (a structural isomer of phenanthrene) to kaolinite at pH = 7.08

and observed a value of 1.97 ml/g, in agreement with the results reported

here. Nonlinear regression was used to fit the data to an exponential curve

based upon the "salting" coefficient model for the activity coefficient

(Equation 2.5). The calculated salting coefficient was 0.284 L/mol;

however, variability in the data was such that the regressed coefficient was

not statistically different from 0.0. The magnitude of the empirical
"salting" coefficient was, however, similar to the values reported by

Whitehouse (1985) for phenanthrene at 25.3°C (ks = 0.269 ± 0.066 L/mol)

and within the range of salting coefficients that can be calculated from data

collected by Hegeman et al. on phenanthrene sorption to Rotterdam Harbor

sediment (1995).
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2.4.1.2 Phenanthrene to extracellular polymer equilibrium distribution

coefficient

Results from the fluorescence quenching experiments are

summarized in Figure 2.4. The distribution coefficient ranged from 2060

ml/g to 3290 ml/g at 0 and 30 ppt, respectively. Sorption of phenanthrene

to the extracellular polymer was about an order of magnitude smaller (on a

sorbent mass basis) than reported values for PAH sorption to humic acids

(Schlautman & Morgan, 1993; Gauthier et al., 1986; Liljestrand &

Shimizu, 1991).

An exponential curve fit through the data resulted in a salting

coefficient of 0.341 L/mol. Based on the experimental values,

phenanthrene sorption to extracellular polymer would increase about 60%

as phenanthrene is transported from a fresh to marine environment.

Other researchers (Carter & Suffet, 1982; Schlautman & Morgan,

1993) have investigated the effects of small additions of divalent cations on

hydrophobic pollutant sorption to DOM surrogates. Schlautman and

Morgan (1993) studied the effect of ionic strength on anthracene sorption

to International Humic Substances Society humic acid at pH = 7. As Ca+2

was added to increase the ionic strength from 0.00 1 to 0.1 mol/L, these

investigators observed that the PAH distribution coefficient remained

nearly constant (Schlautman & Morgan, 1993). An ionic strength of 0.1

mol/L corresponds to a salinity of about 5 ppt and, based on the regressed

salting coefficient model, a change in salinity from 0 to 5 ppt would change

KPAHDoM by 8%. Given reasonable experimental errors, an 8% change

would be difficult to detect. Carter and Suffet (1982) saw increases in
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Figure 2.4: The effect of salinity on the distribution coefficient for
phenanthrene sorption to 9702-M4 extracellular polymer. The exponential
curve fit is based upon an empirical salting coefficient model (Equation
2.5) and the error bars denote 95% confidence intervals.
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DDT binding to humic substances with small Ca+2 additions (20 mg/L), but

they reported that their results were not statistically significant.

2.4.1.3 Extracellular polymer to kaolinite equilibrium distribution

coefficient

The effect of salinity on KsOMs is shown in Figure 2.5. The data

does not show any systematic trends and it is believed that batch-to-batch

variability in the extracellular polymer was the likely cause of the scatter.

Regression to obtain a salting coefficient was not attempted and, for

modeling purposes, the sorption coefficient was assumed to be constant at

the average value of 7.5 ml/g as shown in Figure 2.5.

The lack of an ionic strength effect on polymer sorption would

appear to be at variance with the work of several investigators who

examined the effects of divalent cations on humic acid sorption to solids

(Dempsey & O'Melia, 1983; Tipping, 1981; Tipping & Heaton, 1983). At

ionic strengths ranging from 1 to 30 mM these researchers observed that

the addition of divalent cations significantly enhanced hIunic sorption to

solid surfaces (Tipping & Heaton, 1983). The ionic strengths used in their

work were smaller than the background riverine electrolyte solution

employed in this research (i.e., 5 mM CaSO4). Tipping and Heaton (1983)

note that the effects of Ca"2 have been attributed to bridging between the

solid surface and the humic acid. Since the specific surface area of the

solid and/or binding capacity of the organic matter would limit the number

of bridging sites available, it would appear reasonable to expect that once

all the sites have been filled, additional increases in Ca+2 concentration

would not result in an incremental increase in the sorption coefficient. In
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Figure 2.5: The effect of salinity on extracellular polymer sorption to
kaolinite clay. The experimentally obtained distribution coefficients are
shown with 95% confidence intervals. The horizontal line represents the
average of the data.
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this research observed values of KDOMs were insensitive to salinity changes,

supporting the conclusion that the effect of divalent cations on sorption of

DOM is limited to low ionic strengths. At ionic strengths typical for

estuaries, the expectation of a significant additional influence on DOM

sorption caused by increases in the concentration of Ca"2 and other divalent

cations may not be reasonable.

Differences in the physical/chemical composition of the extracellular

polymer used in this research and the humic acids used by other

investigators might explain the contradictory observations concerning the

effect of ionic strength on DOM sorption. However, both extracellular

polymer and humic acid are high molecular weight polydisperse poly-

functional compounds (Tipping, 1981; Jenkins, 1996) found as recalcitrant

components of natural DOM (Chudoba et al., 1986; Underwood et al.,

1995). It seems likely that their response to changes in solution chemistry

would be correlated. Regardless of chemical differences in the DOM

constituents examined, the significant increases in sorption coefficient seen

by Tipping and others (Dempsey & O'Melia, 1983; Tipping, 1981; Tipping

& Heaton, 1983) are unlikely to be sustainable as the ionic strength

continues to increase beyond riverine levels.

2.4.2 Simulating sorption in the estuary with a three conmponent

equilibrium sorption model

2.4.2.1 System parameters

Two criteria must be met for equilibrium sorption to explain trapping

of pollutants in estuaries. The pollutant sorption coefficient must: 1) be

large enough to cause a significant fraction of the pollutant to be bound to
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suspended sediment and 2) if it is not sufficiently large under fresh water

conditions the sorption coefficient must increase considerably when the

pollutant is exposed to elevated salinities.

A simulation of phenanthrene sorption in the estuarine environment

was calculated for typical estuarine conditions at the turbidity maximum.

The turbidity maximum is a location of high salinity gradient where alluvial

particles are hypothesized to coagulate and settle; hence, it is likely to be a

prime location for pollutant trapping within an estuary. Typical sediment

concentrations in this region range from about 10 to 600 mg/L (Campbell

& Spinrad, 1987; Gibbs, 1977). Although sediment concentrations as high

as 2.5 g/L have been reported (Rogers, 1993), it is likely that such extreme

concentrations are not reasonable for the majority of the world's estuaries.

Since large sediment concentrations increase the sorbed fraction (see

Equation 2.7), a conservatively high value of 0.6 g/L was chosen when

calculating the feasible extent of pollutant trapping. Dissolved organic

matter concentrations also vary widely in estuaries depending on local

organic matter sources; a value of 10 mg/L (Liss, 1976) would mimic an

estuary polluted by anthropogenic DOM sources and result in a suspended

sediment:DOM weight ratio of 60. Sorption coefficients used for the

model calculations discussed below are surmnarized in Table 2.1.

2.4.2.2 Enhanced sorption: salinity effects and coatings of suspended

sediment with DOM

Figure 2.6 shows how the overall sorption coefficient for

phenanthrene might be expected to change as the salinity increases from
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Table 2.1: Summary of overall distribution coefficients, K0 , used in the
pollutant trapping analysis for [suspended sediment]. = 600 mg/L, [DOM]a
-10 mg/L.

Ko (ml/g)

Sorption System 0 ppt 30 ppt Ref.

Phenanthrene +

extracellular polymer 1.51 2.27 this work
+ kaolinite

tannic acid + kaolinitea 8.44 12.4 this work

alginic acid + 14.5 21.1 this work
kaolinitea

tannic acid + 473 570 this work
bentonitea

alginic acid + 745 798 this work
bentonitea

humic acid + kaolinite 67 this work

Boston Harbor lab resultsb 1000 Chin &
Gschwend, 1992

Boston Harbor field results' 29400 McGroddy &
Farrington, 1995

"Results are reported at a suspended sediment:DOM weight ratio of 50.
bFor a sediment organic carbon content of 5%.
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Figure 2.6: Results from calculations with the three component sorption
equilibrium model are plotted as the overall sorption coefficient, K0, versus
salinity. Model predictions are shown with (-) and without (--) the
inclusion of 10 mg/L DOM, to illustrate the impact of the surrogate DOM.
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riverine to marine levels. Model results are provided with and without the

influence of DOM so that the importance of enhanced sorption via

increased DOM coatings can be discerned. The predictions for the overall

distribution coefficient rose from a value of 1.51 mug at 0 ppt salinity to a

value of 2.27 ml/g at 30 ppt. The deposition of DOM coatings increased

Ko by 9% at all salinities while increases due to "salting" out resulted in a

55% increase in K0 . The low enhancement to sorption by DOM coatings

is a result of the observed insensitivity of KD°ms to changes in salinity.

Combining the "salt" and DOM mediated effects on phenanthrene

sorption yielded an overall increase in the Ko of about 65% in the transition

from fresh to marine water. While the magnitude of this increase is

significant, for the typical estuarine parameters used in this analysis a

900% increase in the overall sorption coefficient would be required to go

from a sorbed fraction of 10% to 50%. Given the assumptions in the

model calculations, equilibrium sorption appears to be relatively insensitive

to estuarine salinity changes, and hence is unlikely to be a dominant

mechanism leading to increased pollutant association with suspended

solids in the transition from a fresh to marine environment.

To generalize the conclusions about DOM sorption under estuarine

conditions, additional DOM/suspended sediment surrogates were screened

for enhanced sorption effects. Screening experiments were performed with

the low organic carbon content kaolinite clay used in prior experiments and

a higher organic content bentonite clay. Extracellular polymer, tannic acid

and alginic acid were all considered as DOM surrogates. The overall

sorption coefficient for phenanthrene was obtained using the centrifugation
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method. Experiments were performed at fresh (0 ppt) and marine (30 ppt)

conditions with sediment:DOM weight ratios of co, 10,000, 50 and 10.

Table 2.1 summarizes of the sorption coefficients obtained with a

sediment:DOM weight ratio of 50 and Table B.2 in Appendix B provides

sorption coefficients for the other weight ratios tested. In agreement with

the relative hydrophobicities of alginic and tannic acid (Merck, 1976),

sorption coefficients for phenanthrene in the presence of alginic acid were

consistently 60% higher than those observed with tannic acid. Changing

the sorbent from kaolinite to bentonite increased the overall sorption

coefficient by a factor of 50. For all the sediment and DOM combinations

studied, except for phenanthrene sorption to kaolinite in the presence of

extracellular polymer, the DOM caused a weak enhancement to the

phenanthrene sorption that reached about 25% at a sediment:DOM weight

ratio of 10. For most cases, the extent of DOM enhancement to

phenanthrene sorption decreased with increasing sediment:DOM weight

ratio. Details of these results are summarized in Figures B. 1 to B.3 of

Appendix B. In similar work, Murphy et al. (1994) studied hydrophobic

organic compound sorption to mineral bound humic acid at ionic strengths

comparable to salinities ranging from 0 to 5 ppt. In support of the results

of this research, they observed that changes in the ionic strength had little

influence on hydrophobic organic compound sorption. The results of the

screening tests also corroborate data obtained from the three component

equilibrium sorption model for phenanthrene, extracellular polymer and

kaolinite.
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For the sorption paradigm to explain pollutant trapping, large

increases in pollutant binding in response to elevated salinities are needed;

however, the aggregated experimental evidence obtained for extracellular

polymer, alginic acid and tannic acid sorption to kaolinite and bentonite

indicate that increases in salinity did not cause a significant increase in

DOM sorption. Furthermore, this work suggests that the considerable

increases in DOM binding to solid surfaces seen by previous investigators

at low ionic strengths (Dempsey & O'Melia, 1983; Tipping, 1981; Tipping

& Heaton, 1983) cannot necessarily be extrapolated to salinity levels

encountered in the estuary.

2.4.2.3 Implications for pollutant trapping

Using the data obtained for the phenanthrene, kaolinite, extracellular

polymer system, the sorbed fraction, f, (Equation 2.7) was found to be

0.1% signifying that 99.9% of the phenanthrene would be expected to

remain dissolved. The DOM/sediment screening experiments previously

described were also used to estimate the extent of pollutant trapping.

Observed and experimentally obtained Ko's for fresh and seawater are

summarized in Table 2.1 and sorbed fractions are compared to other

calculations (detailed below) in Figure 2.7. The calculated fraction sorbed

to sediment (Equation 2.7) ranged from 0.9% to 32% with the

phenanthrene, alginic acid, bentonite system providing the highest level of

trapping. The evidence garnered in these experiments show that the

observed sorption coefficients are not large enough to account for pollutant

trapping (i.e., f. > 0.5). Using Equation 2.7 at the point where the sorbed

fraction is one-half, indicates that Ko would have to be larger than 1667
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Figure 2.7: Comparison of PAH trapping observed in the field and
calculated in this paper for typical estuarine conditions. Results are
reported as the sorbed fraction which is a ratio of the amount of
phenanthrene sorbed to suspended sediment to the total amount in the
system. In all cases, laboratory sorption measurements cannot achieve the
level of trapping seen in the field. Boston harbor field and laboratory
results were derived from McGroddy and Farrington (1995) and Chin and
Gschwend (1992), respectively.
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ml/g for the sorption mechanism to result in greater than 50% trapping to

sediments. A Ko greater than 15,000 mug would be needed to explain a

90% level of pollutant trapping. A possible rationale for the low results

obtained using the sorption model is that the experimental surrogates were

not representative of the DOM found in estuaries. To test this hypothesis,

a thought experiment was performed using humic acid, a very hydrophobic

DOM constituent. Representative values of 15,000 mug and 500 ml/g

were chosen for KPMDOM and KD°Ms, respectively (See Table B.3 in

Appendix B for a list of sources consulted). With these values the

resulting estimate for f, was only 3.9%.

It is worth noting that the high Ko values necessary to explain

pollutant trapping have been reported in some field studies (McGroddy &

Farrington, 1995; McGroddy et al., 1996). McGroddy and Farrington

(1995) directly measured solid and aqueous phase concentrations of

phenanthrene in Boston Harbor. Using a 5% organic carbon content for

the solid phase, a Ko of approximately 29,400 mug was estimated from

their data, leading to an fs of 95%. However, Chin and Gschwend (1992)

performed laboratory sorption experiments on the same Boston Harbor

sediments used by McGroddy and Farrington (1995) and significantly

lower Ko's were obtained from their data. Their sorption coefficient was

roughly 30 times smaller than the field observations, indicating that

sorption contributed about 3.4% to the observed phase distribution

coefficient based on sediment and water analysis in the field. The Ko

obtained by Chin and Gschwend (1992) would lead to an estimated sorbed

fraction of 37%. This value is considerably lower than that based upon the
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measured phase distributions and is within the range of the values seen for

the model systems examined in this research.

A comparison of f. from field, laboratory and scaling analysis is

illustrated in Figure 2.7. Field levels of PAH trapping (f. > 0.5) were not

found for the experimental surrogates even though conservatively high

estimates for the suspended sediment concentration (600 mg/L) and DOM

concentration (10 mg/L) in estuaries were used. The extent of trapping

summarized in Figure 2.7 is based on the suspended sediment

concentrations assumed and the validity of phenanthrene as a

representative hydrophobic pollutant. Although this analysis considered

the high end of the typical suspended sediment concentrations, unusually

high solids loading could result in sorbed fractions greater than 50%. In

addition, the overall sorption coefficient is highly sensitive to pollutant

hydrophobicity (Karickhoff, 1984), so that f. calculated using more

hydrophobic pollutants might be larger than 50% for some suspended

sediment/DOM combinations. It is, however, unlikely that either of these

effects would increase the sorption coefficient enough to achieve the

sorbed fractions seen in field measurements (McGroddy & Farrington,

1995; McGroddy et al., 1996).

Sorptive equilibrium data analyzed in this research resulted in levels

of pollutant trapping of less than 50%, at variance with field measurements

done in the Boston Harbor (McGroddy & Farrington, 1995). Yet, the

sorption coefficients obtained with the model systems were in agreement

with laboratory sorption experiments done on the same Boston Harbor

sediment, suggesting that suitable surrogates for studying sorption in
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estuaries have been used. The disparity between distribution coefficients

based on sorptive uptake and those based upon phase distribution of

contaminants in the field lead to the conclusion that some sediment bound

phenanthrene, perhaps associated with atmospheric soot particulates, may

not be available for aqueous phase equilibrium distribution (McGroddy &

Farrington, 1995; McGroddy et al., 1996). From the model calculations

presented herein it can be inferred that sorptive equilibrium is likely to play

a minor role in controlling phenanthrene trapping within the estuary.
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CHAPTER 3:

HYDRODYNAMIC PAIR DIFFUSION IN ISOTROPIC RANDOM

VELOCITY FIELDS WITH APPLICATION TO TURBULENT

COAGULATION*

3.1 Introduction

Coagulation and colloidal stability depend on the detailed

hydrodynamics and interparticle forces that affect the particle collision

rate. Fluid motion and van der Waals attraction increase the aggregation

rate while fluid drag and interparticle forces, such as double layer

repulsion, resist particle-particle contact (Russel et al., 1989). The

mechanisms leading to colloidal aggregation have been previously

investigated with the goal of either preventing or promoting particle

aggregation. Long term colloidal stability is important in the production of

paints, while flocculation tanks used in wastewater treatment plants rely on

fluid shear to promote aggregation and subsequent settling of undesirable

particulate matter (Appiah & O'Melia, 1990). Coagulation processes are

also important in natural systems where they may govern pollutant fate and

transport. In estuaries, suspended sediment aggregation in response to the

*Reprinted with permission from BRUNK, B. K., KOCH, D. L. & LION,

L. W. 1997 Hydrodynamic pair diffusion in isotropic random velocity fields

with application to turbulent coagulation. Phys. Fluids. Copyright 1997

American Institute of Physics.
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destabilizing influence of salinity gradients is an important mechanism

leading to the deposition of contaminated sediments (O'Melia, 1980).

Flow type can have a profound influence on the level of coagulation

observed in natural and engineered systems. For instance, coagulation

rates in steady laminar flows are influenced by the specific linear flow

considered (Greene et al., 1994); flows containing significant rotational

components, like simple shear, lead to slower coagulation compared with

irrotational flows such as uniaxial extension (i.e., stagnation flow) (Greene

et al., 1994).

In each of the practical examples noted above, the colloidal particles

experience a spatially and temporally complex fluid environment.

Turbulent flows are probably the most prevalent class of complex flows

encountered. Analytical expressions valid in the large total strain limit

(i.e., when the product of the velocity gradient and the time scale over

which the gradient changes is large) have been proposed for modeling

turbulent coagulation of particles in the absence of interparticle forces

(Delichatsios & Probstein, 1973; Camp & Stein, 1943; Saffinan & Turner,

1956). As yet, the complicated stochastic structure of turbulence and other

complex flows has eluded detailed analysis of particle collision dynamics

when interparticle potentials and hydrodynamic interactions are

incorporated. In spite of the importance of coagulation in complex flows

such as turbulence, prior calculations of coagulation rates in the presence

of colloidal forces and hydrodynamic resistance have been limited to

simple stationary linear flows (Greene et al., 1994; van de Ven & Mason,

1977; Zeichner & Schowalter, 1977; Adler, 1981), Brownian diffusion
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(Spielman, 1970; Valioulis & List, 1984) and gravitational settling (Davis,

1984). The applicability of coagulation results gleaned from computations

in steady linear flows to turbulence is uncertain.

In many aqueous solutions the particle based Reynolds number is

small even for 100 gim particles and therefore the turbulent flow in the

neighborhood of colliding particles behaves like a random laminar flow.

Important advances have been made in the study of coagulation in two-

dimensional chaotic laminar flows such blinking vortex flow (i.e., a flow

produced by the periodic application of two corotating point vortices

separated by a fixed distance) (Ottino et al., 1992; Ottino, 1991). Results

from these numerical studies may provide insight into floc formation for

more realistic complex flows.

The investigations of aggregation in blinking vortex (Muzzio &

Ottino, 1988; Bidkar & Khakhar, 1990) and other chaotic flows (Danielson

et al., 1991) are limited to non-interacting particles. In steady non-chaotic

flows characterized by the high vorticity that exists in blinking vortex flow,

coagulation at long times is hindered by non-crossing, closed streamlines

because particles on adjacent streamlines are prevented from coagulating

with each other. This confinement is largely removed when considering

chaotic flows (Ottino et al., 1992; Muzzio & Ottino, 1988). Dynamical

simulations of coagulation in chaotic flows of moderate strain show that,

compared to regular flows having the same vorticity, chaotic flows lead to

higher coagulation rates (Ottino, 1991). For moderate strain rates, the

initial collision rate in a chaotic blinking vortex flow was found to be a
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monotonically increasing function of total strain (see Figure 5 of Bidkar &

Khakhar, 1990).

In agreement with the chaotic flow work, this chapter shows that the

rate of coagulation is a linearly increasing function of total strain in the

limit when the product of the characteristic rate of strain and the strain rate

correlation time is small. As a result of the dependence on total strain, the

coagulation rate in the diffusion limit can be significantly lower than that

calculated for the steady linear flow. This rate decrease is exacerbated

with the inclusion of interparticle forces and hydrodynamic interactions. In

Section 3.3.3 hydrodynamic drag is established to have increased

importance in randomly fluctuating flows which can lead to increased

suspension stability.

The coagulation process is considered for a general three-

dimensional isotropic random flow that can be linearized on scales

comparable to the particle radius. Results of the colloid aggregation

analysis in this generalized fluctuating flow serve as a prototype for a

broad class of flows in which the imposed randomly varying velocity field

leads to relative particle motions that are diffusive in character. The flow

is taken to be a statistically stationary velocity field with separate strain

and rotation time scales. (N.B. One might imagine constructing a chaotic

flow with these specifications by considering an aperiodic three-

dimensional combination of the H/E-flow studied by Danielson et al.,

1991. Statistically stationary is used here to mean that the statistics of the

randomly varying velocity field do not change with time.)
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The approach is to consider the limit where the relative particle

motion can be written statistically in terms of a probability conservation

equation containing a pair diffusion coefficient that embodies the

kinematics of the flow field. The pair diffusion paradigm is restricted to

flows exhibiting small total strain so that particle movement over distances

comparable to the particle radius is the result of many uncorrelated velocity

field fluctuations.

The diffusion model has been previously used to treat polymer

stretch in turbulent flows (Jhon et al., 1987) and in fixed beds (Shaqfeh &

Koch, 1992). The diffusion equation for the pair probability is derived by

time averaging over many velocity fluctuation events. The resulting

conservation equation given in Section 3.2 contains a pair diffusion

coefficient and a "drift" velocity. The "drift" velocity is shown to result in

a non-uniform steady-state pair probability distribution when

hydrodynamic interactions are included.

Using the pair diffusion approximation an analytical expression is

derived for coagulation in the absence of interparticle forces that depends

on the strain rate correlation time. Correlation time is used here and below

to mean the time scale over which the variable of interest is correlated to

subsequent values (i.e., the integral of the autocorrelation coefficient as

shown in Equation 3.2 below). Inclusion of interparticle forces and

hydrodynamic interactions into the diffusion model leads to a non-analytic

integral for the stability factor, W, where W is the ratio of the coagulation

rate without consideration of interparticle interactions to the rate with

interparticle interactions. The analysis of W for random flows is greatly
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simplified by using the diffusion approach because W can be obtained from

a one-dimensional numerical integration rather than by computing

ensembles of relative particle trajectories. Stability factors are calculated

(Section 3.4) for coagulation of different size particles in the presence of

van der Waals attraction, electrostatic repulsion and hydrodynamic

interactions.

These colloid stability results are applied to the problem of

coagulation in a turbulent flow for particles that are small compared with

the Kohnogorov length scale, i.e., the length scale of the smallest turbulent

eddies (Section 3.5). As estimates for the strain and rotation rate

correlation times at the Kolmogorov scale of turbulence, results have been

taken from the direct numerical simulations (DNS) of Pope and coworkers

(Yeung & Pope, 1989; Girimaji & Pope, 1990; Pope, 1990).

3.2 Derivation of the pair probability conservation equation

Consider an incompressible, locally linear velocity field that

fluctuates randomly with time and is characterized by different rotation and

strain rate correlation times. The magnitude of the fluctuations in the shear

are assumed to be large compared to the mean shear on length scales

comparable to the particle radius, so only the fluctuating motions are

dynamically important in determining particle movement and coagulation.

As a consequence of the above assumptions, the relative velocity between

two material points in the flow can be written as:

u P l(t)r. (3.1)
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where ui is the relative velocity, Fij(t) is the statistically-stationary

fluctuating velocity gradient, and rj is the relative position vector between

the particles. The characteristic velocity gradient is defined as

F = (<FPirPi>)' where the brackets indicate ensemble averaging over

independent realizations of the fluctuating velocity gradient. The velocity

gradient is decomposed into its strain and rotational components and the

times scales of the strain and rotation rate are assumed to be decoupled.

The strain rate correlation time, TS, is defined as:

= ffs(t/) dt = ,<Sik(O)S 'l(t)> dt (3.2)

where Sij(t) is the strain rate defined as 1/2(Fij + ýj), and fs(t/¶s) represents

the correlation coefficient between the strain rate at two different times,

i.e., the two-time strain rate correlation coefficient. The integral in

Equation 3.2 is assumed to converge and the terms in brackets are not

tensors but components of the strain rate covariance matrix. The rotation

rate correlation time, TR, can be written with an analogous expression by

replacing all S's in Equation 3.2 with R's and noting that Rii = /(] 1ii - ri)

The characteristic strain, S, and rotation rates, R, are defined analogously

to P and are subject to the constraint that P2 = S2 + R2.

Consider a dilute suspension of particles immersed in a randomly

varying isotropic flow field such that only encounters between pairs of

particles are significant. The total strain, defined as the product of the

characteristic velocity gradient, F, and the strain (or rotation) rate

correlation time (-s or TR) is assumed to be small. Since the flow is
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stochastic, it is convenient to describe the distribution of particles using a

pair probability density function (pdf), P(r,t), that describes the probability

of finding particles separated by the vector r at time t. For particles

immersed in this flow, the influence of a singlet random velocity

fluctuation is minor. That is, the response of the relative particle position is

small over the correlation time of the flow; therefore, a diffusive process

characterizes the relative particle motion. In the absence of hydrodynamic

interactions, colloidal forces and aggregation, this relative diffusion

randomizes the particle positions making all relative separations equally

likely.

Hydrodynamic interactions, however, lead to a nonsolenoidal

relative velocity (i.e., the particle velocities are compressible.). The

compressibility of the relative trajectories leads to a net drift of pairs

toward small interparticle separations. This velocity may be rationalized in

terms of the variations in the amplitude of the velocity fluctuations with

relative position. When hydrodynamic interactions are included, the

relative velocity between two particles is a non-linear function of the

particle separation; thus, the response of the particle pair to a random

velocity event will depend on its current position. At large particle

separations a velocity fluctuation has a comparably large influence on the

pair probability compared to small separations. Therefore a zero net

particle flux at steady state requires a non-uniform pair probability

distribution. The particle flux, given by the product of the relative velocity

and concentration, will be equal at all positions if the concentration at small

separations is higher than at large separations. The accumulation of
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particles at small separations is manifested by the presence of a "drift"

velocity in the pair probability conservation equation.

The presence of a hydrodynamic drift for the pair probability in a

random linear flow is analogous to the phenomena of thermophoresis

observed for Brownian particles in a temperature gradient. Since the

Brownian diffusion coefficient is proportional to the temperature, the

particle flux is higher in the hot region than in the cold. Therefore, to have

zero flux at steady-state, the particles must be concentrated in the colder

region. The accumulation of particles in the cold regions indicates that

there was a "drift" of particles from the hot region.

The equation governing the pair probability is derived below and

analytical expressions for the pair diffusion coefficient are obtained. In the

derivations presented in this section, particle coagulation will be ignored.

The methodology employed to obtain an equation for P(r,t) follows the

techniques used by Shaqfeh & Koch (Shaqfeh & Koch, 1988) for the

orientation probability of axisymmnetric particles flowing through a dilute

fixed bed and used by Koch & Shaqfeh (Koch & Shaqfeh, 1991) for the

pair probability of sedimenting particles influenced by a distant third

particle. An alternative derivation of the pair diffusivity and drift velocity

in terms of the time rate of change of the first and second moments of the

pair separation is presented in Appendix C to this thesis.

The pair probability, Q(r,t), satisfies the conservation equation:

+ Vr = 0 (3.3)at
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where Vr is the del operator, and the overdot indicates a time derivative.

0(r,t) is influenced by the details of the velocity fluctuations governing the

rleative motion of the pair at the present time t. To obtain a pair

probability that only experiences the average effects of the velocity

fluctuations, P(r,t) is defined as the time average of 0(r,t):

t + -P

P(rt) = f O(r,t')dt' (3.4)
t- t

where the time, Tp is much larger than the relaxation times, u. and TR for

the stochastic flow field. The validity of this time average implies that a

separation of time scales exists so that P varies due to hydrodynamic

diffusion on a time scale TQ which is much larger than tp. This assumption

will be validated at the conclusion of the derivation.

The fluctuating pair probability, p is defined as the difference

between the pair probability and its time averages:

p- P (3.5)

Since p arises solely due to the velocity fluctuations occurring over the

previous time period Ts(-uR) and 1-rs(1-cR) < 1, the perturbation to the pair

probability is small, i.e., I p II P1. In the forthcoming analysis it will

become apparent that p scales in proportion to (Sts)P.

Taking the average of Equation 3.3 over a time interval (t - Tp, t + tp)

gives the evolution equation for P:
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S+ = 0 (3.6)
at

Time averaging over -U >>Ts, tV is equivalent to sampling over many

realizations of the random velocity field; therefore, the time average is

equivalent to an ensemble average and it is denoted by < >. Substituting

the perturbation expansion for 0 (Equation 3.5) into the convection term in

Equation 3.6 gives:

ap + L'(rP)t + (rP)] = 0 (3.7)at

It will be seen that P varies over time scales much large than tv; therefore;

P can be taken out of the time average in Equation 3.7. The mean relative

velocity of the particles is zero due to the isotropy of the flow; thus,

Equation 3.7 simplifies to:

ap + V.(tp) = 0 (3.8)a~t

This result shows that the pair probability comes from the convection of

the fluctuating probability. Ultimately, the p transport term in Equation 3.8

will give rise to a diffusion coefficient that characterizes the underlying

random flow as shown below.

To continue the analysis, an expression for p is needed. The

fluctuating probability is the incremental response of particles to a singlet
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velocity fluctuation. The conservation equation for p is found by

substituting Equation 3.5 into Equation 3.3 to yield:

p+ ap +V.['P + tp] = 0 (3.9)at at

aP/at scales like P/TQ while ap/6t is proportional to P(rsS)/ts so that aP/at

is order (StcQ)' smaller than ap/6t and the time derivative of P can be

neglected. [A posteriori analysis shows that rs/TQ _ (TsS) 2.] In addition

since I p I<((I P the advection term involving p in Eq. (9) is negligible

compared with the advection term involving P. The solution to Eq. (9) is

found by integrating over time.

t

p = -fV'v[P]dt' (3.10)

Because f remains correlated for -s and cp > -us the lower limit of

integration can be replaced with -co without affecting the value of the

integral. After substituting Equation 3.10 into Equation 3.8, the pair

probability conservation equation becomes:

apt+ ± V/P - D faP] 0 (3.11)

where the drift velocity, Vi and the pair diffusivity, Dijf are given by:

ar.Vý = '(t) (t/ dt/ (3.12)
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As expected the pair diffusion coefficient is found by integrating the two

time relative velocity correlation. The drift velocity comes from temporal

t

Df = f) (3.13)

correlations between the relative velocity and its divergence. Below

explicit expressions for D1jj and V1f are given for the random linear flow

considered in this work.

3.2.1 Hydrodynamnic pair diffusion coefficient

The particle separation is assumed to be small compared with the

characteristic length of the imposed flow so that the relative velocity in

Equation 3.13 can be expanded as a linear function of position:

t

Df f (Pk(t) )rk(t) Pj1(t) r,(t))dt' (3.14)
0

Since the analysis considers flows in which the total velocity

gradient is small, Ftc (and P-cR) (( 1, particle positions do not change much

over the velocity gradient correlation time. Under this constraint, the

relative position vectors are approximately independent of the random

velocity gradient field and can be removed from the ensemble average:
t

D = rkrl f F,,(t))dt' (3.15)

0
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Furthermore, if t >> r, (and -J), the lower limit of integration can be replaced

with -•o without changing the value of the integral. Letting t" = t'-t and

assuming the system is statistically stationary in time so that the process

depends only on time differences, t", yields:

0

DU = rk l f (rik(t j,) Pjl(O))dt" (3.16)
-Wo

which relates the turbulent diffusivity to the integral of the covariance of

the velocity gradient at time, t = 0 and time t = t"(i.e., the Lagrangian

velocity gradient autocorrelation function). The Lagrangian velocity

gradient autocorrelation function may be decomposed into its strain and

rotation components to yield:

0

of= rkrl f[silhlfS(t/tS) + Riglfr(t/Tr)]dtl/ (3.17)

where Sikjl = <Sik(t)0Sj(t)>, Rikjj = <Rik(t)RjI(t)> and cross terns such as

<Sik(t)PR).(t)> are zero due to isotropy.

To complete this derivation, tensor expressions for the covariance of

the velocity gradient tensors need to be inserted into Equation 3.17.

Tensor relations for Sikjj and Rjkj, in the assumed isotropic linear flow field

are obtained by writing Sikjl and RikIj as fourth order isotropic tensors that

depend on three scalar coefficients. For the strain rate tensor, the

numerical coefficients are evaluated by applying symmetry, SikjI = Skjl;

continuity, SijjI = Sikj = 0; and, defining the magnitude of the strain to be Sijij
S '. The final fonn for the strain rate covariance is:
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Siv-. Y8= 8 6 ii ý-k j'ik8I1 (3.18)101

where 68j is the identity tensor. The rotation rate covariance is obtained

using a similar analysis to yield:

Rikfl = R 2 [8i.kl - jk] (3.19)6

where the anti-symmetry property for RikjI is Rjkj1 = -Rkijl.

The assumption of finite correlation times means that the integrals in

Equation 3.17 converge. After substituting Equations 3.18 and 3.19 into

Equation 3.17, an analytical expression results for the pair diffusivity:

D 3 4 SI + (3SS2 + 5Rr--(- - (3.20)
'j 30 rS2 S 2)

where r is the magnitude of the relative position vector, ri.

Hydrodynamic interactions can be incorporated into the derivation of

the turbulent diffusivity presented above by writing the particle velocity as

a superposition of the imposed velocity field and the velocity change

created by particle-particle hydrodynamic interactions. Assuming that the

particle Reynolds number, Re = Fa 1
2/v, is small, the relative particle

velocity can be written in the form:

= Ljr(t))r, = Fi, r, - A(r) 2 + B(r) 8ik---)]SkO r (3.21)
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where A(r) and B(r) are monotonic fimctions of radial position that decay

over distances comparable to the particle radius (Batchelor & Green,

1972a; Kim & Karrila, 1991). The above expression is substituted into

Equation 3.13, and after simplification gives:

Df - s[A-I +[32 () +5R]( 2) (3.22)

which is the pair diffusivity of particles experiencing hydrodynamic

interactions.

To summnarize, the expression given for D% is the pair diffusion

coefficient of particles itmnersed in a statistically stationary isotropic

random velocity field with small total strain. Further, the flow field must

be linear on length scales comparable to the particle radius and have

independent and finite strain and rotation rate correlation times.

3.2.2 Drift velocity

The drift velocity given by Equation 3.12 can be simplified using the

properties of the assumed isotropic random velocity field. First consider

the case without hydrodynamic interactions. In the absence of interactions,

the particles will follow the fluid motion so the relative velocity, ti, can be

replaced with the relative velocity of the fluid, uj. Then, by continuity,

dui/dri = 0 and consequently Vif= 0.

When hydrodynamic interactions are included, particles no longer

follow the fluid motion. Instead the relative particle velocity is given by

Equation 3.21. The drift velocity depends on the divergence of the relative

particle velocity gradient which has been reported as (Batchelor, 1977):
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= rSgr2- w 
(3.23)ari. rE2

where,

dA
w(r) = -3(A-B)-r-d (3.24)

dr

and, it has been shown that w(r) is always positive (Batchelor, 1977).

Equations 3.21 and 3.23 are substituted into Equation 3.12 and the

resulting expression is simplified using the tensor relation for the strain rate

autocorrelation function (Equation 3.18) to yield:

V f - 2 "cs s 2

w(A-1)ri (3.25)S 15-

Since w is positive and (A-i) is always negative, the drift velocity given by

Equation 3.25 is negative causing the particle pairs to move inward. At

large separations (A-i) -, 1 and w is proportional to r- (Batchelor &

Green, 1972b) so the drift decays rapidly to zero as the particle separation

increases. In the lubrication regime, where the gap between the particles is

small compared to their radius, A approaches 1 and W monotonically

reaches a constant value of 6.372 (Batchelor, 1977). Therefore, as the

particles approach contact, the drift velocity also goes to zero. The

magnitude of the drift velocity for identical spherical particles is shown in

Figure 3.1 as a function of the radial separation scaled on the particle
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Figure 3.1: Radial component of the hydrodynamic drift velocity as a
function of the relative separation between two equal size particles scaled
by the particle radius.
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radius. In Figure 3.1 the drift velocity is scaled with V0 = 2-sS2a/15 where

a is the particle radius. At r/a z 2.08 the magnitude of the drift velocity

goes through a maximum value of about 1.5V 0, and by a separation of

about 4a the magnitude of the drift velocity has decayed to 5% of its

maximum value.

The derivation of the evolution equation for P (Equation 3.11)

assumes that there is a separation of time scales between P and 0. This

assumption may now be examined. Denoting TQ as the characteristic

evolution time for P, the separation of time scales implies that TQ/,s »> 1.

The evolution time for P scales with the characteristic time for two

particles to diffuse over a distance comparable to the particle radius: TQ

a2/Dr, where Drr is the radial component of the hydrodynamnic pair

diffusivity. We can estimate the order of magnitude of the diffusivity by

inspection of Equation (3.20). Without considering the details of the

hydrodynamic interactions Drr = O(S2 a2 ts). This yields -cQ/Ts - (5 sS)2.

Since the total strain is given to be small, the constraint that TQ/TUs »> 1 is

automatically satisfied.

3.2.3 Steady-state pair probability distribution

The presence of the drift velocity means that particles influenced by

hydrodynamic interactions will preferentially drift towards small particle

separations at steady state. A schematic illustrating the coordinate system

and boundary conditions is shown in Figure 3.2. A spherical coordinate

system is placed in a frame of reference that moves with a particle of

radius a, and a relative position vector connects the centers of size 1- and

size 2-particles. The particles are immersed in a randomly varying linear
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Figure 3.2: Schematic illustrating the coordinate system and boundary
conditions for computing the steady state pair probability distribution with
and without particle coagulation. Two particles of radius a, and a2 are
separated by a distance r. Radially symmetric interparticle forces, FT, act
upon the centers of the two particles. At large separations, the particle
concentrations reach their bulk value, while there is an absorbing boundary
condition at the surface of the excluded volume when coagulation is
considered.
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flow field that can be characterized by the pair probability equation derived

above. For the steady state pair probability distribution calculations, the

particles are assumed to have the same radius and the system is dilute

enough so that only binary interactions occur. At large relative separations

the pair probability attains its bulk value P -• CI•C 2 . The flux of pair

probability is zero at the collision radius. The hydrodynamically induced

particle flux comes from Equation 3.11 and is given by:

j, = v.P - DIfaP
6r. (3.26)

J

where ji is the flux of pair probability. As discussed above, in the absence

of hydrodynamic interactions the drift velocity is zero. At steady state, ji =

0 and Equation 3.26 can be integrated to obtain P = CI•C 2 everywhere in

the absence of hydrodynamic interactions.

As already noted, the presence of hydrodynalnic interactions causes

a drift in the pair probability that leads to a non-uniform distribution.

Because the flow is isotropic, the circumferential components of the flux

will be zero. Substituting Equations 3.22 and 3.25 into Equation 3.26 and

considering only the radial component gives:

J, =VoC-C2(A-1)[wrP - (A-1)r 2 adP] (3.27)

where P is normalized with its value at infinity and r is normalized with the

particle radius for the remaining part of this section. Setting Jr = 0 and

rearranging leads to an ODE for P:
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dw)P (3.28)

An analytical solution to Equation 3.28 cannot be found; however, the

functional form of Equation 3.28 can be obtained in the lubrication regime.

First, Equation 3.28 is recast in terms of the non-dimensional gap width

S= r - 2. For small particle separations w = 6.372 + 20.385ý - 2.34/ln(1/ý),

A 1 - 4.077C and r = 2. Making these substitutions and integrating gives:

S CB1 -0. 7 8 e -2.39
, l12 (3.29)

where the constant of integration, B, can be found by matching P in the

lubrication region to the full solution of P. This expression for P valid in

the lubrication region is identical to one derived previously by Batchelor &

Green (1972b). [Note, Batchelor and Green (1972b) omit the exponential

term in Equation 3.29 because it is negligible in the lubrication region;

however, it is included in Equation 3.29 for completeness.] Batchelor and

Green derive an equation for the pair probability in a linear velocity field

that is valid assuming all particle trajectories come from or go to infinity.

The result is a pair probability that is only a function of the radial

separation and indepenendent of the applied velocity gradient. In other

words, they show that a change in the velocity field (provided all relative

trajectories are open) yields the same steady state pair probability. The

universality of this expression for P has been verified by our derivation

where we consider the pair probability in a fluctuating linear flow. The
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restriction against closed streamlines would seem to preclude the

applicability of Batchelor and Green's analysis to the arbitrary random

linear flow being studied here since it is conceivable that a realization of

the random linear flow will contain closed trajectories. The assumption of

small total strain; however, mitigates the presence of closed stream lines.

At small total strain closed stream lines are not persistent thus particles

trapped in closed trajectories will be released on times that scale with the

flow correlation times.

The full solution to Equation 3.28 was obtained by numerical

quadrature using a 5th order Runge-Kutta routine. The integration was

started at r = 10 where hydrodynamic interactions were unimportant and P

= 1. Near and far field forms for A were taken from Kim & Karrila (1991).

A plot of A versus relative separation was used to choose r = 2.05 as the

transition between the near and far field approximations. For r < 4, w was

obtained from spline interpolation of values tabulated by Batchelor (1977).

Beyond r = 4, the definition of w (Equation 3.23) was used to find w from

far field expressions for A and B (Kim & Karrila, 1991). Figure 3.3 shows

the distribution of P as a function of radial separation. Non-linear

regression of Equation 3.29 in the lubrication region yields B1 = 0.21. For

comparison Batchelor and Green (1972b) estimate B1 to be 0.234 by fitting

Equation 3.23 to two points in the lubrication region. The two estimates

for B, are quite close; however, the estimate obtained here is considered

more accurate since it matches numerical data over a range of gap widths.

The pair probability distribution shown in Figure 3.3 reveals a

significant accumulation of particles at small separations. When r = 2.01,
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Figure 3.3: The steady state pair probability distribution in the absence of
particle aggregation as a function of the radial separation scaled with the
particle radius. For comparison symbols representing the pair probability
calculations by Batchelor & Green (1972b) are included. The inset shows
the behavior of the pair probability in the lubrication regime by plotting P
against the gap width scaled by the particle radius. The thin line in the
inset shows the analytical approximation to the pair probability valid in the
lubrication region, Equation 3.29.
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P is 5.07 times higher than the value at infinite separation. By r = 2.65, P

is within 5% of the bulk concentration. Finally at r = 10, P is

indistinguishable from 1 which demonstrates that the outer integration

boundary did not influence the numerical results.

3.3 A diffusion approximation to coagulation

In the limit of small total strain where the product of the

characteristic velocity gradient with its correlation time is small, the

transport of coagulating particles in an isotropic random linear flow can be

treated as diffusive. In this section an expression is derived for the

coagulation rate constant (or kernel) that includes the effects of

interparticle forces and hydrodynamic interactions.

3.3.1 Problem statement

With the exception of the inner boundary condition, the system set

up for the coagulation problem is identical to that used in determining the

steady state pair probability distribution. Figure 3.2 shows a schematic of

the coagulation problem. The particles are influenced by Brownian

motion, hydrodynamic interactions and a radially acting force, FT, that

includes, but is not limited to, van der Waals attraction and double layer

repulsion. The coagulation rate is determnined by including interparticle

forces and Brownian motion into the pair probability conservation equation

and calculating the collision rate of size 2-particles with the size 1 -particle

test sphere. Particles stick on contact so that the probability of finding

type 1- and 2-particle singlets separated by a distance a = a, + a2 is P = 0.
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As r - oo, the particle concentrations reach their bulk values and the pair

probability is normalized such that P -. CIC 2 _.

In general, the rate of doublet formation can be written as:

d -= kC'C; (3.30)

where k is the coagulation kernel or rate constant, C,,2 is the bulk

concentration of aggregates formed from a type-i and -2 particle and Cj-

and C2 - are the bulk concentrations of type-i and -2 particles, respectively.

The coagulation kernel incorporates the transport mechanisms leading to

coagulation (e.g., Brownian motion, fluid shear, gravitational settling) and

the effect of interparticle interactions (e.g., hydrodynamic interactions and

interparticle forces). The effects of transport and particle-particle

interactions can be separated by relating the coagulation rate constant to

the stability factor: k = kV/W, where k' is the coagulation rate in the

absence of interparticle interactions and W is the stability factor. A large

W indicates a stable suspension; conversely, small W means that the

colloidal suspension aggregates readily.

To simplify the investigation of coagulation, consideration is

restricted to a low particle Reynolds number dilute system where the

volume fraction of particles is much less than one. The fact that the system

is dilute suggests that the local mixing time is short compared with the

coagulation time and hence the pair probability is at a quasi-steady state.

The assumption of low particle Reynolds number limits the analysis to

particles less than about 100 ýtm in radius for aqueous systems. The
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analysis is restricted to binary interactions and focuses on the role of fluid

shear by assuming particle settling and inertial effects are negligible. The

pair diffusion formulation readily allows inclusion of the effects of

Brownian motion; thus, the ensuing analysis is valid for arbitrary Peclet

number.

3.3.2 Coagulation rate

To derive the steady state pair probability equation for the relative

motion of two particles affected by a random flow field, Brownian motion

and potential forces, the principle of linear superposition is used. This

yields:

Ira2 6r f+rV - \rr/D')d~J (3.31)

where Drb is the Brownian pair diffusivity and Vr? is the relative velocity

induced by the interparticle potential. The linearity of Stokes equations of

motion implies that the effects of hydrodynamic interactions on Drf, Drb, V rf

and Vr' can be superimposed. Since, the diffusion coefficient and drift

velocity for the random linear flow were derived assuming that the relative

motion of the particles was small over the flow time scale (ta), it is

important that the relative motion imparted by Drb and Vri do not affect the

relative motion of the particle pair on a time scale *s. This constraint will

be satisfied as long as Drf is at least comparable to Drb and Vr' and the total

strain, Prs <( 1. If these conditions are not satisfied, then the error in Drf is

unimportant because the motion is driven solely by Brownian motion and

colloidal forces.
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The system geometry and boundary conditions are illustrated in

Figure 3.2. Only the radial component of the conservation equation needs

be considered because of spherical symmetry. Batchelor provides the

following expression for Vr in terms of the interparticle potential (1976):

V - l I +1z)G(r)d(a1  dr (3.32)

where p is the viscosity, 4(r) is the interparticle potential, and G(r) is a

non-dimensional function of radial position that accounts for particle-

particle hydrodynanic interactions. Values of G(r) range from 1 when the

particles are infinitely separated to zero at contact (Kim & Karrila, 1991;

Batchelor, 1976).

Integrating Equation 3.31 once results in an expression for the

collision rate of size 1- and 2- particles:

K = 41nr2 (Vf+VZ)P - (Df+Db)-yP (3.33)

where K = k C(C 2 _ is a constant independent of radial position because

the flux across spherical shells around the test particle is fixed at steady

state.

At this point several simplifications can be made in order to obtain

an analytical solution. Since the primary interest is in the behavior of

colloidal particles in a random velocity field, non-interacting particles that

are not influenced by Brownian motion are selected here as the base state.

Neglecting hydrodynamic interactions (A=1 in Equations 3.22 and 3.25,
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G=I in Equation 3.32 and w = 0 in Equation 3.25), interparticle potentials

(Vri = 0), and Brownian diffusion (Drb = 0) , Equation 3.33 becomes:

K = Dor 4dP (3.34)
dr

where Do = 8iiS~us/15. Equation 3.34 can be solved by separating and

integrating from P = 0 at r =o to P = C1"C2'- at r --o to obtain the force-

free coagulation kernel:

k0 = 8 7tS2tU S 3 (3.35)
5

where a = a, + a2 as defined above and the superscript 0 indicates that this

the coagulation rate constant in the absence of particle interactions. The

coagulation rate constant is a function of strain rate (S) as well as the total

strain (S-cs) in the system. For comparison Equation 3.35 is plotted in

Figure 3.4 against the total strain along with coagulation rate constants

obtained for non-interacting particles in steady simple shear and uniaxial

extension (Zeichner & Schowalter, 1977). In Figure 3.4 the rate constants

have been normalized by So3 to highlight differences between the three

flows. The coagulation rate constant in a random linear flow with small

total strain is significantly lower than that in simple shear and uniaxial

extension.

Other possible simplifications of Equation 3.33 that result in

analytical solutions include non-interacting Brownian particles with no
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Figure 3.4: Comparison of the coagulation rate constant normalized by So3

for non-interacting particles as a function of total strain. Shown are curves
for steady uniaxial extension and steady simple shear (Zeichner &
Schowalter, 1977) that are valid in the limit of large strain. The curve
labeled random linear flow represents Equation 3.35 and it is valid in the
limit of small strain.
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fluid motion (Smoluchowski, 1917) and non-interacting particles in the

presence of fluid motion and Brownian diffusion. The latter expression can

be obtained by neglecting hydrodynamic interactions (A = 1, G = 1, w = 0)

and interparticle forces (Vr' = 0) in Equation 3.33 to obtain:

0/, 27c S2"cs G3 1]
k / (3.36)15Pe 1 +2Pe /2[tan-' (2Pe /2) -/2]J

where,

Pe = 8- S2 l k ,
5kbT( + p)2 ~2

kb is the Boltzmann constant, and T is the absolute temperature.

Expanding the tan` term in the limits of zero and infinite Peclet number

recovers the Brownian coagulation (Smolochowski, 1917) and kV

(Equation 3.35) limits, respectively.

In the sections that follow, analytical and numerical methods are

used to derive the ratio of coagulation rate including interparticle forces,

hydrodynamic interactions and Brownian diffusion to the base state

coagulation rate defined in Equation 3.35.

3.3.3 Determining the stability factor

In this section an integral solution for the coagulation rate that

depends on the relations used for the interparticle potential is derived. In

the limit of large particles and weak van der Waals forces an analytic

approximation can be obtained to the integral solution. The analysis given

below is confined to the effects of van der Waals attraction and electrical
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double layer repulsion although it may be generalized to include other

spherically symmetric interparticle potentials.

3.3.3.1 Constitutive relations for interparticle forces

The effects of van der Waals attractions and double layer repulsion

on the coagulation rate are considered here. Hamaker was the first to

calculate the van der Waals force between two dissimilar spherical

particles. In the limit of small particle separations when the gap width

between particles is much smaller than the average particle radius,

Hamaker's form of the van der Waals attractive potential reduces to

(Israelachvili, 1992):

-A HP
dw 3(1+) 2 • (3.37)

where (vdw is the potential due to van der Waals attraction, 13 is the radius

ratio (a2/al), and AH is the Hamaker constant. Davis (1984) gives

Hamaker's equation for the van der Waals potential at arbitrary gap width.

Phase shifts caused by the finite propagation speed of the

electromagnetic dipole field lead to retardation of the dispersion forces at

distances several multiples of the London wavelength, X; therefore,

Hamaker's result overestimates the actual van der Waals attraction.

Schenkel & Kitchner (1960) provide an analytical approximation for the

retarded van der Waals potential that has been modified by Davis (1984)

so that they apply to different size spheres:

d ( p2 +0.---N 2 for •<4/NL and, (3.38)
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A 49 8.68 4.72]
vdw - (1 +p)2 15N 4 5 NL• 105NL•2 (3.39)

for ý > 4/NL and C <« 1. In Equations 3.38 and 3.39, NL is the radius of the

two particles scaled by the London retardation wavelength, X, (NL= 2110/X).

The London wavelength is taken to be 100 nm (van de Ven & Mason,

1977; Davis, 1984). These best-fits to the retarded van der Waals potential

are valid in the lubrication regime only (i.e., where X (( o/2). Constraining

), << o/2, so van der Waals attraction decays in the lubrication regime leads

to the restriction that NL >> 4it which is satisfied for all the particle sizes

examined in this paper.

Electrostatic repulsion caused by the interpenetration of the ion

double layers surrounding charged particles may be incorporated using the

Gouy-Chapman model for the electrical double layer. Russel et al. (1989)

summarize the various approximations available for calculating the

potential due to electrostatic repulsion along with their limits of

applicability. For small gaps [ýK' < 2, where K' = KO/2 is the inverse

Debye length (K) scaled by the average particle radius] and thin double

layers (K' > 2) the constant surface potential version of the linearized

Derjaguin approximation is used (Russel et al., 1989):

4 )DL= ( +14 TC EDE0IV21n(l + e (3.40)

where 4 )DL is the potential due to double layer repulsion, ED is the

dielectric constant of the surrounding fluid, Co is the pennittivity of the
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vacuum, and * is the surface potential. In the limit of large gaps (yK' >

2), a constant surface potential may be assumed:

DL= , ')4CED0 1 j 2 e-'• (3.41)

Following DLVO theory (Israelachvili, 1992), the total interparticle

potential may be expressed as a superposition of the van der Waals

attraction and double layer repulsion:

N_ ($
kb T N vdw R NRDL/ (3.42)

where the hat(A) indicates that the potentials have been scaled such that NA

expresses the magnitude of the van der Waals attraction relative to thermal

energy and NR is a ratio of electrostatic repulsion to van der Waals

attraction. NA and NR are defined respectively as:

N A and N- -: (.4-)
A kT (1 +p)2 R A (343)

The force due to the interparticle potential is -d4/dr and its typical

functional form is shown in Figure 3.5 for a pair of 4 gtm radius particles.

The van der Waals force (thin dashed line) begins to become significant

when the gap width, h, is proportional to X/2Tc, which corresponds to a

gap width on the order of the London retardation wavelength. The solid

thin line shows the total force acting on the particles as a sum of the van

der Waals attraction and double layer repulsion. For this system
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Figure 3.5: Example of the interparticle force as a function of distance.
Shown are the force due to van der Waals attraction (thin dashed line) and
total force composed of van der Waals attraction and double layer
repulsion (thin solid line). The effective interparticle force defined by
Equation 3.45 is shown with (thick solid line) and without (thick dashed
line) double layer repulsion. Example results are for 4 gm radius particles
with a surface potential of -9.4 mV in a 10-3 M ionic strength solution (NL
=500, NF = 500, NR = 1500 and ' = 25).
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NR= 1500 and 1K' = 25 corresponding to polystyrene particles with a

surface potential of -9.4 mV in a 10' M ionic strength solution. A

repulsive energy barrier is seen beginning at ý -~ l/:' and it extends to gap

widths comparable to the London retardation wavelength before van der

Waals forces dominate the total force again.

3.3.3.2 Scaling analysis

Hydrodynamic interactions, van der Waals attraction and

electrostatic repulsion all influence particle aggregation. Table 3.1 lists

these interparticle interactions as well as their length scales and

magnitudes. These characteristic forces and length scales along with the

Brownian diffusion coefficient and the particle radius ratio can be used to

form six non-dimensional groups that define the parameter space for the

stability factor. Table 3.2 lists the six dimensionless parameters chosen

and provides an estimate of their typical magnitudes. These characteristic

ranges were calculated by considering an aqueous dispersion of colloidal

particles with o = 1.0 to 100 gim, AH = 10'9 to 10-21 J, r 0.1 to 1000 sa

and ix=0 to 100 mV.

3.3.3.3 Derivation of the stability factor

The full solution to the radial pair probability conservation equation

(Equation 3.31) can be found in tenns of two embedded integrals.

Equations 3.22, 3.25, and 3.32 are substituted into Equation 3.33, the

relative position vector is scaled with the average particle radius and the

pair probability is scaled with its value at infinite particle separation. By

defining a non-dimensional coagulation kernel of the form,k = A/ 3 g, a

scaled radial flux equation is obtained:
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Table 3.1: Relevant scaling factors

Force Length scale Magnitude

hydrodynamic a, 1 cgPal2

van der Waals X AH/X

electrical double layer 1/c cEo4 2a,
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Table 3.2: Non-dimensional parameters and their typical magnitudes.

Parameter Typical value Description

13 = a2/a 0.125 to 1.0 Radius ratio

a = 100 jim: Ratio of hydrodynamic
81tng S 2 t (• 3 103 to 109 drag to van der Waals

NF 5A- 2 G= 1 Am: attraction
10-3 to 103

8_1rg-r SS2 (03 0 = 100 Pim: Ratio of diffusivity
Pe 104 to 108  caused by the fluctuating

Skb T(1 +13)2, 02) a=1 Igm: velocity gradient to the

Pe = NF(AT)((1+13)) 102 to 102 Brownian difusivity

o = 100 gm: Ratio of double layer
N 4n GED E0_ 2 0 to 107 repulsion to van der

R AH 0=1 jIm: Waals attraction
0 to 10,

2 7t a 102 to 104 Ratio of average particle
NL - radius to London

wavelength

K' =K O/2 a = 100 gim: Ratio of London
0 to 101 wavelength to Debye

( = 1 jim: length
0 to 103
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k = k(C + 2).

IG + Nw(A-l1)(C + 2)}P - NF{(ý + 2)2 (A-i) 2 +Pe -1G} .d] (3.44)

with the non-dimensional parameters defined in Table 3.2. Solution of

Equation 3.44 can be obtained using an integrating factor. Multiplying

both sides of Equation 3.44 by:

S-G d4 +NFw(A-()(5'+2)

I = exp fFd•' exp f [(/()2(l4-A)2 (345)

and rearranging, yields:

d k
.~PI(k)] =NF(C + 2)2[( +2)2(1 -A) 2 +Pe -' G]

The argument F in Equation 3.45 can be thought of as the effective

interparticle force after hydrodynamic interactions have been included.

Figure 3.5 illustrates the functional forn of this argument with (thick solid

line) and without (thick dashed line) the presence of double layer repulsion

when equal size 4 pim radius particles are assumed with NR = 1500, iK' =

25, Pe' = 0, and NF = 500. (As noted previously, this set of parameters

corresponds to polystyrene particles with a surface potential of -9.4mV in a

10.' M ionic strength solution.) For the system without double layer

repulsion (thick dashed line), the interparticle force goes to zero far from

the particle which indicates that the system is behaving like two non-
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interacting spheres. For distances roughly equal to the London wavelength

(h =X1/2t), van der Waals attractions becomes significant and F becomes

negative. The same qualitative behavior is seen at large and small particle

separations for the curve that includes double layer repulsion (heavy solid

line). In this case, however, F has a positive valued maximum at

corresponding to 1/1OW:' indicating an energy barrier that impedes

flocculation. For this situation, primary minimum flocculation into the

deep van der Waals potential energy well may not occur because the

colliding particles cannot overcome the repulsive energy barrier. A

shallow secondary minimum may exist beyond the energy barrier and weak

secondary minimum flocculation could occur under some conditions. The

effect of the viscous forces on the effective interparticle potential between

the particles can be seen by comparing the lines without hydrodynamic

interactions (thin lines) with those that include hydrodynamic interactions

(thick lines). Hydrodynamic interactions amplify the force acting between

the particles. With hydrodynamic interactions a purely attractive potential

(dashed lines) has a van der Waals attractive force that becomes significant

at larger gap widths. When double layer repulsion is present (solid lines)

the hydrodynamic interactions amplify the repulsive force leading to a

higher effective barrier to primary minimum coagulation.

Two factors contribute to these observations, namely: the presence

of hydrodynamic drift and the ratio of hydrodynamic interactions found in

F. Drift in the pair probability leads to the accumulation of particle pairs at

small separations; thus, the drift velocity acts as an additional attractive

force. The presence of drift is expected to decrease colloidal stability
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because the migration of particles to smaller separations increases the

chance that the particles will successfully collide. The importance of the

drift depends on its magnitude compared to the interparticle potential.

Using lubrication approximations for w and A (i.e., w - 6.372, A-1 - -

4.077Q) gives a characteristic drift velocity of 50NFA. The velocity due to

the van der Waals force scales with 1/ý where G = 2ý when C ( 1.

Equating the two velocities shows that the van der Waals attraction and

drift velocity have equal magnitudes when {2 - 1/lOONF. At the location of

maximum drift (C = 0.08 from Figure 3.1) the drift velocity is significant for

NF > 2 which is within the expected range for NF given in Table 3.2.

Enhancement of particle aggregation due to the drift velocity contributes to

the instability of colloidal suspensions. Situations can be envisioned where

the inward flux of particles caused by drift can overcome a repulsive

energy barrier caused by a diffuse double layer. An analogous scaling

comparing the flux due to double layer repulsion to the flux due to drift

suggests that when NF > NrK' double layer repulsion will be mitigated by

the drift velocity.

The other important effect of hydrodynamic interactions is to

amplify the drift velocity and interparticle potential. This behavior is

illustrated by examining the functional form of the hydrodynamic

interactions in the lubrication region, i.e., where ý < 1. Referring to

Equation 3.45 it is seen that the effective interparticle force depends on

G/NF(1-A)2 . In the lubrication regime G/(1-A)2 - 1/ý and for NFý < 1 the

hydrodynamic forces can be expected to increase the impact of the

interparticle forces. In contrast, when NF > 1 viscous forces diminish the
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effect of interparticle forces. For the case presented in Figure 3.5, NFý - 1

when ý = 1/1W' = 0.02. For gap widths greater than ý = 0.02 the

interparticle force is reduced while at smaller gap widths the interparticle

force is augmented. Indeed, the effective repulsive force shown by the

thick solid line in Figure 3.5 is augmented when ý < 0.02. A similar

amplification effect is expected for the drift velocity term where Equation

3.45 shows that the effective drift depends on w/(1-A) - 1/ý in the

lubrication region.

The solution to Equation 3.46 is obtained by integrating ý from

particle contact to infinity, noting that as - -, P -, 1 and I -. 1 and when

S-, 0, P -, 0 and I -, 0. After dividing the result into the force-free

flocculation kernel (Equation 3.35) an integral expression for the stability

factor is obtained:

W=24f (A) + - ( (3.47)

o (C +2)2(A1-1)' +pe -'I (C +2)2

Since these results are predicated on a pair diffusion methodology,

one might wish to compare Equation 3.47 to the stability coefficient

integral for particles coagulating in response to Brownian diffusion. Due to

a judicious cancellation in the Brownian coagulation stability factor,

hydrodynamic interactions are only present in the pre-exponential factor of

the stability integral, and hence the effects of viscous interactions are

subordinate to interparticle forces (Spielman, 1970). In contrast, when

using pair diffusion to describe particle motion due to a fluctuating velocity

field, hydrodynamic interactions are in the exponent of the stability factor
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integrand (Equation 3.45). This is because it is a different hydrodynamic

function that controls relative motion in shear flow (i.e., 1-A) from that

which controls relative motion due to potential forces and Brownian

motion (i.e., G). In other words viscous interactions are significantly more

important in this problem.

The development of the coagulation rate and the stability factor

ignores the coupling between hydrodynamic and electrical forces (termed

electroviscous effects) (Russel et al., 1989). This effect arises for charged

particles that are surrounded by a diffuse electrical double layer. When a

charged particle moves, the fluid immediately surrounding the particle

appears more viscous because of the extra work required to move both the

particle and its surrounding diffuse double layer (Russel et al., 1989; Kim

& Karrila, 1991). The increased viscosity manifests itself as an additional

retardation on the relative particle mobility.

The ion Peclet number, Pe', and the Hartmann number, Ha,

characterize the importance of electroviscous effects. The ion Peclet

number compares the relative magnitude of particle convection to ion

diffusion. When Pe' is large the double layer cloud is not fast enough to

react to the particle movement. This disequilibrium between the particle

and its ion cloud leads to the formation of a retardation force that slows

particle movement. Pe' = S/D'K'2 where D' - 10- m2/s is the ion diffusivity;

thus, deformation of the double layer is expected to be most important for

diffuse double layers and small particles. The Hartmann ntunber, Ha =

CDJI/4ugtD', compares the relative strength of the electrical force to the

viscous force. Electroviscous forces would be anticipated to be most
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important for large surface potentials; however, since this effect only arises

in the double layer it will have little effect for thin double layers. If the

total strain is assumed to be 0.01 then the conditions presented in Fig. 5 (K'

= 25, NR = 1500, NF = 500 and 4 gtm particles) give Pe' = 0.004 and

Ha = 0.01 which suggests that electroviscous effects are unimportant.

Beyond noting here that electroviscous effects could be important in some

cases in the calculation of colloidal stability (i.e., for low ionic strengths

and small colloids), its effect has been neglected in the subsequent analysis

of coagulation.

3.3.3.4 Asymptotic approximation for weak van der Waals attraction and

non-Brownian particles

An analytical approximation to Equation 3.47 is possible for equal

size particles if there is no double layer repulsion or electrostatic

retardation and Brownian motion is ignored. If it is also assumed that the

van der Waals attraction and hydrodynamic interactions are only important

in the lubrication regime, then analytic lubrication approximations to the

hydrodynamic interactions and van der Waals forces can be substituted

into the integrals for I(y) and W. The assumption that the drift velocity is

only important in the lubrication region cannot be made. As noted above,

the effective drift velocity is proportional to 1/ý in the lubrication region

which would lead to a divergence of the integral I(Q) if the lubrication

approximation is applied to all gap widths.

In the derivation presented below, the problem of drift being

important outside the lubrication regime is circumvented by the splitting the

integral for I(Q) into an inner and outer piece. Lubrication approximations
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for drift and van der Waals attraction are used in the inner integral to

obtain an analytical solution. The outer integration includes only drift and

is computed numerically. As shown below, Equation 3.47, the integral for

W, is dominated by the lubrication region. While not mathematically

exact, the approximation does allow an analytical determination of the

power law dependence of NF on the stability factor.

Let Q = QV + QD equal to the integral in Equation 3.44 where the

integral has been broken into a part containing the interparticle potential,

Qv, and a part containing the drift velocity, QD. For instance,

QVf A/ A/ (3.48)
t + 2)2(1 -A) 2 +Pe - G]

where Qv is assumed to decay within the lubrication region. To obtain the

asymptotic approximation for Qv, the lubrication approximations to the

hydrodynamic interaction functions, A(Q) and G(Q), and Eq 3.37 are

substituted into Equation 3.48. The resulting expressions are further

simplified by noting that, since ý < 1 in the lubrication regime, (ý + 2) - 2.

Solution to the simplified relation for Qv yields:

QV = -QV1/•2 (3.49)

where Qvj = 1/(1 9 9 .5NF).

Making the lubrication assumptions on QD shows that it does not

decay in the lubrication regime. Instead QD is broken into an inner and

outer integral yielding,
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QD f W [A / + f w -1) (3.50)QD= (C/ + 2)(A- 1) (C' +2)(A- 1)

where ýL is the boundary between the inner and outer regions and it was

chosen to be 0.01. The first integral in Equation 3.50 was found from

numerical quadrature to be -1.625. The second integral is calculated

analytically by substituting the lubrication approximations for A and w (In

this case w is taken to be 6.732.). The final expression for I() is given by:

I(g) = 0.197 (3.51)

The approximation for W is obtained by applying the lubrication

assumptions to Equation 3.47 and substituting Equation 3.51 in for I(ý).

Solution to the simplified relation for W gives:

=Wo B2N°'1l(3.52)

where the theoretical estimate for the constant B2 is 5.01.

In the limit of negligible Brownian motion and retardation, Wo is

related to the ratio of the viscous forces to the van der Waals attractive

force at lengths comparable to the particle radius. Over the typical NF

parameter space (defined in Table 3.2), the stability factor varies one order

of magnitude. When the particle radius increases from 0.5 to 50 gm, W0

has a 5-fold increase indicating a more stable suspension. Increasing the
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shear rate by a factor of 100 increases W0 by a factor of 1.7. Higher NF

corresponds to weak van der Waals attraction, meaning hydrodynamic

lubrication forces between the particles are effective at hindering particle

aggregation. The trend with increasing particle radius is expected; as the

particle size increases, the hydrodynamic resistance to collision begins

acting at larger distances compared with the London wavelength.

Therefore, van der Waals attraction is not sufficient to bring the particles

together.

Figure 3.6 illustrates the constraints to the validity of the asymptotic

approximation on the NF / NL plane where NF is the ratio of viscous forces

to van der Waals forces and NL is the ratio of particle radius to London

retardation wavelength. The shaded region shows the expected region of

NF/NL parameter space that can be physically realized given typical shear

rates and particle radii (see Table 3.2). Shown as solid lines are

demarcations for van der Waals attraction decaying in the lubrication

regime (X << o/2), negligible Brownian diffusion (Pe -, o) and negligible

retardation.

For retardation effects to be unimportant, the effective interparticle

potential acting on the particles must be insignificant at distances

comparable to the London retardation wavelength, X. The effective

interparticle potential scales in proportion to Fý, where F is defined in

Equation 3.45. Requiring Fý to be much less than one at h = X/2nt leads to

the result that NL )) (1000NF)'/2.

Figure 3.6 shows that the asymptotic approximation is valid for large

particles (large NL) and strong flows (large NF). Retardation is the primary
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Figure 3.6: Map showing the constraints on the asymptotic approximation.
Solid lines indicate the boundaries where lubrication approximations are
valid (X = c/2), Brownian motion is negligible (Pe = 1) and electrostatic
retardation is negligible (F = 1 at h = X/2n). The shaded area indicates
the values of NF and NL expected for typical coagulating systems.
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constraint on the region of applicability while the lubrication approximation

appears to be valid for all practical particle sizes (NL = 102 to 10').

Operationally, the asymptotic approximation has been found to be

within 5% of the full numerical solution (presented below) for NF > 10'

which is outside the range of typical values shown in Table 3.2. Further

comparison of the numerical and asymptotic results is provided in Section

3.4.

The asymptotic analysis provides a good method for computing the

dependence of the stability factor on NF because the NF dependence comes

from the lubrication regime where van der Waals forces are important.

The stability factor integral does not converge in the lubrication region so

there is an error associated with using the lubrication approximation for

w/(A-1) in the w integrand. Since the integrals containing the drift term are

independent of NF this error only affects the numerical pre-exponential

factor. Numerical integration of the actual stability factor equation for NL

= 10,000 and NF > 10" gives a pre-exponential factor of B2 = 5.53 (see

details in the next Section). The asymptotic prediction of B 2 = 5.01

compares well with the prediction based upon non-linear regression of the

exact numerical solution. The approximation works so well because the

lubrication form for w/(A-1) is, surprisingly, an excellent approximation for

w/(A-1) out to large separation distances.

In summary the influence of shear rate and particle size on the

coagulation rate is found to be curtailed by the presence of interparticle

interactions. For the non-interacting system (Equation 35), the coagulation

rate constant was proportional to ,S2o3l; however, in the asymptotic limit
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of no retardation or Brownian motion, the coagulation rate increases in

proportion to (t,'s2o 3)° 9(AH/ut) 0".

3.4 Colloidal stability in chaotic flows

3.4.1 Numerical Method

Using the diffusion approximation permits investigation of the

effects of van der Waals attraction, electrostatic repulsion and

hydrodynamic interactions on colloid stability. Estimates for the stability

factor, W, at arbitrary NF, NL and Pe are obtained by reexpressing

Equations 3.45 and 3.47 as a set of coupled ordinary differential equations

and solving them using a 5th order Runge-Kutta algorithln (Press et al.,

1992). The local integration error is constrained to 105 and the error is

regulated during integration by using adaptive step control. At the start of

the integration, particles are separated by 20 average particle radii - a

separation distance where interparticle and hydrodynamic interactions are

negligible. The governing equations are then integrated backwards until

the separation distance scaled by the average particle radius is less than

0.000 2/NL and the integrals converge.

Near and far field forms of the hydrodynamic interactions were

taken from Kim & Karrila (1991). Plots of the hydrodynamic interaction

functions as a function of gap width were used to decide when to switch

from the near field to the far field fonn. To achieve a relatively smooth

transition in the hydrodynamic interactions, log-linear interpolation of the

near and far field solutions was used in the neighborhood of particle

separations scaled with the average radius of 2.05.
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Appendix D contains a description of the computer program used in

these calculations.

3.4.2 Results and Discussion

As discussed in 3.3, the stability factor for turbulent coagulation in

the diffusion limit depends on six non-dimensional parameters (Table 3.2).

Illustrating the behavior of the stability factor for all possible parameter

combinations would be infeasible; however, salient features of the effect of

these parameters on the magnitude of the stability factor are summarized

below. First, the asymptotic approximation valid in the limit of small gap

widths, negligible Brownian motion, double layer repulsion and

electrostatic retardation is compared to numerical solutions of W. Next,

the influence of double layer repulsion is examined by varying the surface

potential of the particles and the size of the double layer to investigate the

transition from stable to destabilized suspensions. To illustrate the

significance of the results, a comparison is given of the effect of particle-

particle interactions on colloidal stability for the random linear flow

examined in this chapter to the calculations made by Greene et al. (1994)

and van de Ven & Mason (1977) for steady linear flow fields.

Figure 3.7 shows the combined effects of shear rate (NF = 10'2 to

109) and particle radius (NL = 100 to 10000, 13 = 1) on the normalized

stability factor for fully destabilized (e.g., NR = 0), equal size colloidal

particles. The stability factor in Figure 3.7 is normalized with the non-

retarded asymptotic limit: W0 -- 5.53NF°1" (Equation 3.52). Results are

shown for NL = 100, NL = 1000, and NL = 10000. The dashed lines are

obtained in the absence of Brownian diffusion and the solid lines show the
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Figure 3.7: The stability factor normalized by the asymptotic limit
(Equation 3.52) versus NF and NL for particles with equal radii in the
absence of double layer interactions. The dashed and solid lines represent
solutions in the absence and presence of Brownian motion, respectively.
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predicted colloidal stability when Brownian diffusion is included. The

Peclet number controls the relative strength of Brownian diffusion

compared with diffusion due to fluid motion and is a function of AH/kbT,

NF, and P (see Table 3.2). Unless otherwise indicated AH/kbT was fixed at

1.0; thus, specifying NF, and [3 makes the Peclet number a dependent

parameter. For the current example with equal size particles, Pe = ¼NF.

The value of AH/kbT = 1 corresponds roughly to the Hamaker constant of

polystyrene spheres in water at room temperature, T = 298K (Russel et al.,

1989). As shown in Figure 3.8, W is insensitive to the value of AH/kbT

except for very weak flows.

Figure 3.7 shows that as the flow strength increases (increasing NF)

the stability factors approach the asymptotic solution (W/W0 = 1.0). The

asymptotic solution is approached slowly and is valid for only

unreasonably high values of NF. Calculations that include Brownian

diffusion lead to lower normalized stability factors for small values of NF.

As NF increases for each curve there is a transition from a stability factor

dominated by van der Waals attraction to one where the drift velocity is

important. The change in the dominating mechanism for collision is seen

by the inflection point in the curves. The location of the transition is found

by balancing the particle fluxes due to drift and van der Waals attractions

at h = X/2it (ý = 2 /NL) to give: NF = NL2/400.

The importance of Brownian motion is illustrated in Figure 3.8

where the normalized stability factor (W/W0) is plotted against NF for

several values of AH/kbT and NL = 100, [3 = 1.0. For AH/kbT = 1, the

effect of the Brownian motion is discemable for NF < 1 which corresponds
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Figure 3.8: Sensitivity of the stability factor results to the strength of
Brownian diffusion. The nonnalized stability factor is plotted against the
flow strength parameter, NF, for destabilized particles with NL = 100.
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to a Peclet number of order 1 or smaller. As NF increases Brownian

motion becomes insignificant and the numerically computed stability factor

approaches the asymptotic limit given by Equation 3.52. When NF is large,

the diffusivity due to the fluctuating velocity field transports the particles

until they are close enough for van der Waals forces to cause them to

collide. While at small NF the flow field transports the particles to an

intermediate length scale where Brownian motion becomes important. In

this case, transport to separations where van der Waals forces are

important is accomplished by Brownian motion. Equating the particle flux

due to the random velocity field with the flux due to the Brownian motion

at ý = 2 /NL leads to an estimate for the minimum NF at which flow field

transports the particles close enough for van der Waals attraction to cause

a collision. This balance leads to the criterion that NF> (NL/10)(kbT/AH)

for the hydrodynamic flux to dominate particle transport. This scaling

estimate for the transition from shear to Brownian dominated coagulation is

in agreement with the numerical results.

The influence of Brownian motion on coagulation in the randomly

varying flow is considerably weaker than that detennined for steady linear

flows (Feke & Schowalter, 1983 and 1985). Feke and Schowalter (1983)

used a perturbation technique to determine the effect of Brownian motion

in steady simple shear and uniaxial extensional flow. They found that for

AH/kbT - 1, the influence of Brownian motion extended to Pe of about 100

and that it could act to either increase or decrease the overall coagulation

rate (Feke & Schowalter, 1985). The addition of even small amounts of

Brownian motion (compared to the shear rate) allowed particles to diffuse
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across regions of closed trajectories, thus measurably affecting the

calculated coagulation rate (Feke & Schowalter, 1983). In a system with a

randomly fluctuating linear velocity field, large concentration gradients do

not develop since the diffusive motions imparted by the fluid shear keep

the particles well-mixed. Therefore, the role of Brownian motion in

randomly varying linear flows is suppressed except when the fluid shear is

too weak to bring the particles close enough for van der Waals attraction to

dominate.

Situations where double layer repulsion is present are now

considered. As illustrated in Figure 3.5, significant double layer repulsion

can lead to a repulsive force barrier. The energy barrier can prevent

particles from reaching the primary minimum dominated by attractive van

der Waals forces, hence W -. o.

Figures 3.9 and 3.10 illustrate the effect of double layer thickness for

calculations obtained by setting NL = 2000 and NR = 6000 and assuming

equal sized particles, while NF and the nonnalized inverse Debye length,

K', are allowed to vary. The constant NF lines in Figure 3.9 exhibit an

abrupt transition from stable to unstable suspensions as the double layer

thickness is decreased (W' getting larger) beyond K' about 10,000. For

more diffuse double layers, the stability factor increases with decreasing

double layer thickness until a value near K' = 5000 is reached. Above K' =

5000 the stability factor decreases sharply signaling the transition from

significant double layer repulsion to a destabilized system in which the

double layer thickness no longer extends beyond the deep van der Waals

potential energy well.
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Figure 3.9: Influence of double layer thickness (proportional to 1/K') on
the stability factor, W, for several values of NF. For this analysis NL =
2000, P3 = 1, and NR = 6000. Labeled curves represent A) NF = 10', B) NF

104, C) NF = 10' and, D) NF = 106.
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Figure 3.10: The stability factor, W, as a function of the shear rate
parameter(NF). Labeled curves correspond to simulations run with K'
varied between 10 and 10000. NL = 2 0 0 0 , 1, NR = 6000.
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The behavior of W seen in Figure 3.9 is consistent with the current

physical understanding of the repulsive force. The repulsive force

generated by the double layer scales with NrK' where NR characterizes the

surface potential of the particles and rK' is the inverse Debye length. For

low values of K', the double layer is very diffuse so that the repulsive force

barrier to primary flocculation is broad and weak. As K' continues to

increase, the double layer thins and the barrier becomes higher. At still

larger K' the double layer thickness approaches the London retardation

wavelength ( -'K- 1000) and van der Waals attraction begins to overwhelm

the electrical double layer repulsion. Because W depends on the

exponential of the interparticle force, the narrow but high energy barriers

lead to larger W; thus an increase in W is seen as the energy barrier

sharpens until van der Waals attraction causes the magnitude of the energy

barrier to decrease.

The effect of shear rate is shown in Figure 3.10 for K' = 10, 100,

1000, 8600 and 10000. Also shown on the graph as a thick solid line is the

asymptotic approximation given by Equation 3.52 that is valid for

uncharged particles with large NF. Figure 3.10 illustrates that increasing

shear rate (increasing NF) destabilizes the colloidal system and hence at

high shear, W decreases to the value without double layer repulsion. The

increased shear overcomes the repulsive energy barrier, allowing the

particles to reach the primary particle minimum. Consider the curve

labeled K' = 100 which depicts the coagulation of 16 gm radius particles

with a surface potential of -9.4 mV in a 0.03 M ionic strength solution. If

the total strain is assumed to be 0.01 and the velocity gradient is equally
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partitioned between the strain and rotation components of the flow (e.g., S2

= R2) then for shear rates above about 400 s1 (NF = 104) double layer

repulsion has been mitigated due to the high levels of shear.

Order of magnitude analysis is useful for estimating the critical NF at

which the shear overcomes the repulsive barrier. Balancing the

hydrodynamic flux with the flux due to the double layer repulsion at • =

1/K,' yields: NF = NRK'/10. This estimates the critical NF for the K:' ! 1000

curves where colloidal stability increases to larger flow strengths as K'

increases because the energy barrier becomes steeper. Beyond a Kc' of

about 5000 the curves begin to shift left (see the K' = 8600 curve in Figure

3.10) and approach the destabilized curve given by K' = 10000. The

system shown by the curve labeled K' = 8600 acts like a destabilized

system down to low NF compared to the K' = 1000 result and as NF

continues to decrease the suspension becomes highly stabilized. When K'

= 8600 the interparticle potential is on the margin between a stabilized and

destabilized system and the addition of hydrodynamic interactions causes a

transition from stable to unstable suspension depending on the value of NF.

This behavior can be understood by reconsidering the role of

hydrodynamic interactions in determining the effective force, F. In Section

3.3 it was noted in conjunction with Figure 3.5 that hydrodynamic

interactions can either augment or reduce the interparticle forces depending

on the value of NA. If NA < 1 then viscous forces amplify the interparticle

force and if N > 1 the converse is true. The length scale at which double

layer repulsion is significant, denoted as DL, is given by the Debye length

(1/K'), that is DL -10'. For NF greater than about 10' the effect of double
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layer repulsion will be reduced. In Figure 3.10 it may be seen that for NF

greater than about 10' the K' = 8600 curve is destabilized. Below this NF

value the double layer repulsion is amplified by the hydrodynamic

interactions and the stability factor increases.

The effects of colloid surface potential and shear rate are shown in

Figures 3.11 and 3.12. In Figure 3.11 values of W are plotted against NR"2

(which is proportional to the surface potential, 4r), while K' = 1000, P3 = 1,

and NL = 2000. For low values of NR" 2 the stability factor is not influenced

by electrostatic repulsion as evidenced by the horizontal lines; however, at

a critical value of NR dependent on the value of NF, double layer repulsion

becomes significant and W increases rapidly. In Figure 3.12 the stability

factor is shown as a function of NF. In this figure a sharp transition is

observed between stable and destabilized suspensions. Values of NF to the

right of the transition have lower stability factors because the elevated

shear rates at these higher NF's act to propel colliding particles over the

repulsive energy barrier. The transition from unstable to stable

suspensions shifts towards larger shear rates as the strength of the double

layer repulsion increases. (Note that the possibility of floc break up at high

shear has not been considered.) The minimum in W corresponds to the

transition from a double layer repulsion dominated system to one

dominated by viscous forces. The simple balance of viscous to double

layer forces used to interpret Figure 3.9 and 3.10 describes the transition to

a destabilized suspension as a function of NF and NR.
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Figure 3.11: The effect of NR on W for various NF and f3 = 1, NL 2000
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potential of the coagulating particles. The numbers labeling the curves
indicate different values of NF.
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Figure 3.13: The effect of particle size, NL, on colloidal stability, W, is
shown for various values of the ratio of double layer repulsion to van der
Waals attraction, NR. The plot is for equal size particles when NF/NL3 =
1.25x10 5 and 1c'/NL = 0.5. Labels on the curves designate the values of
NR/NL used.
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The effect of particle size is illustrated in Figure 3.13 for various

ratios of double layer repulsion to van der Waals attraction. In this figure

K•/NL = 0.5, NF/NL3 = 1.25x105 , and P3 = 1 and the stability factor is

plotted against NL. NF, NR and K' have been rescaled with the London

retardation wavelength to remove the effect of particle radius from these

parameters. Shown are curves depicting various values of NR/NL, the

parameter that compares the importance of double layer repulsion to van

der Waals attraction. Without electrostatic interactions and for large NL,

the suspension approaches the asymptotic limit described by Equation

3.52. The addition of double layer repulsion causes W to increase relative

to the asymptotic limit reflecting the fact that larger NR means a higher

energy barrier to coagulation. However, with increasing particle size the

stability factor approaches the asymptote again. Particles with small

diameters are strongly stabilized owing to the existence of a double layer

whose thickness is comparable to the particle radius. With K' fixed and the

particle radius increasing, double layer repulsion becomes unimportant

compared to viscous stress imparted by increased lubrication forces.

The results in Figures 3.9 to 3.13 give the stability factor for

flocculation into the primary minimum of the interparticle potential,

corresponding to direct particle-particle contacts. However, a weak

secondary minimum may sometimes arise at separations larger than that

corresponding to the repulsive barrier. Without resorting to trajectory

analysis, the determination of stable secondary flocculation is difficult to

ascertain. The steady-state diffusion equation cannot account for the fact
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that particles entering the secondary minimum may not remain because the

minimum is too weak relative to the disrupting influence of fluid shear.

3.4.3 Comparison to coagulation in steady flows

It is interesting to compare the relative coagulation rates of colloidal

particles in steady linear flows to coagulation rates in stochastic linear

flows. As shown above (Section 3.3 and Figure 3.4) non-interacting

particles aggregate more slowly in random linear flows in the diffusive

limit than they do in steady linear flows with a comparable strain rate. In

addition, the stability factor calculations presented here serve as a

prototype for determination of colloidal stability in random flows and thus

permit a contrast of the influence of interparticle interactions on colloid

stability in random versus steady flows.

Computations of the stability factor in steady linear flows are

prevalent (Greene et al., 1994; van de Ven & Mason, 1977; Zeichner &

Schowater, 1977; Adler, 1977). Recently, Greene et al. (1994) calculated

the stability factor for particles in a number of steady linear flows under the

influence of hydrodynamic interactions and van der Waals attraction.

Using trajectory analysis Greene et al. (1994) examined linear flows that

contained more strain than vorticity and showed that the stability factor is

nearly insensitive to flow type, except for flows near simple shear. Since

the fluctuating velocity field considered in this manuscript could be viewed

as an ensemble average over all possible linear flows, a simplistic

hypothesis is to expect the stability factors obtained here to correspond to

an ensemble average of the stability factors calculated in Greene et al.'s

(1994) analysis. Yet, the above analysis has shown that when the flow field
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can be treated using a diffusion formulation, hydrodynamic forces are more

significant and there is a significant drift velocity that acts like an attractive

force bringing the particles together; therefore, stability factors obtained

when the diffusion approximation is valid are likely to be smaller than for

steady flows with comparable shear rates.

For consistency in the comparison with Greene et al., calculations

with the diffusion approximation are determined for the case of non-

Brownian particles, negligible electrostatic double layer interactions, and

using the non-retarded analytical expression for dispersion forces originally

derived by Hamaker (see Davis, 1984 for the expression). Figure 3.14

compares the stability factor for the random flow and the stability

coefficients obtained by Greene et al. (1994) for simple shear and

hyperbolic extension (two dimensional extensional flow) as a function of

NF for NL = 395 (approximately 3 pum radius particles). Calculations of the

stability factor for these two flows encompass the gamut of stability factor

magnitudes expected for steady linear flows (Greene et al., 1994). The

stability factor is shown plotted against NF/(S-cs) for two values of the total

strain. The analysis in this manuscript is only valid for small total strain

and the Sts = 1 result shown in Figure 3.14 is mean to illustrate the limiting

behavior as the total strain increases. Numerical simulations (given in

Chapter 4) suggest that the pair probability fonrulation used in this chapter

is valid for Strs < 0.1. The stability factor for coagulation using the

diffusion approximation, shown as the curves is comparable to both the

simple shear and hyperbolic extension stability factors. The computed

stability factors for the random linear flow increase with total strain and, as
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Figure 3.14: Comparison of the stability factor, W, obtained from the pair
diffusion approximation (curves) with stability factors obtained for
stationary simple shear and hyperbolic extension as a function of NF/Strs
(shear rate). Values are shown assuming equal-sized, non-Brownian
colloids and a non-retarded van der Waals attraction without double layer
repulsion. Trajectory analysis for simple shear (El) and uniaxial (two-
dimensional) extension (0) are from Greene et al. (1994).
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the flow becomes more diffusive, colloidal stability decreases. This

behavior can be understood by comparing the interaction of two particles

in a steady and unsteady linear flow. In the steady flow, the particle pair

have one opportunity for collision before the steady flow separates the

particles. In the diffusive limit, two approaching particles will experience

multiple encounters before separating. The probability that one of these

encounters will lead to a successful collision is large; thus, the stability of

the flow decreases in the diffusion limit. This should not be interpreted to

mean that the rate of coagulation will be faster in the limit of small total

strain. Recall that the coagulation rate in the random linear flow is

proportional to the total strain; thus, while the collisions are more efficient

(i.e, a lower W), the overall rate decreases with decreases total strain.

Trajectory calculations by Zeicimer and Schowalter (1977) show

that W is proportional to S°23 in simple shear and S"11 in uniaxial

extensional flow. Both the random flow considered in this thesis and the

uniaxial extension have the same dependence on the shear rate. In the

diffusion limit rotation of the fluid is unimportant, so the flow can be

visualized simply as a fluctuating strain field. In both the random linear

flow and the uniaxial extension all trajectories are open; therefore,

Batchelor and Green's (1972b) analysis of the pair probability distribution

in linear flows applies. Given that the pair probability does not depend on

the flow time scales or flow type, W in the uniaxial extensional flow should

have the same dependence on the shear rate as the random linear flow

examined here. In simple shear, on the other hand, closed trajectories exist

(Batchelor & Green, 1972b)3"; thus, their work does not apply and power
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law relation between shear rate and the stability factor would be expected

to be different.

For the case when double layer forces are included, the calculations

for the random linear flow are compared to work done by van de Ven &

Mason for spherical particles with equal radii (van de Ven & Mason,

1977). Results of van de Ven & Mason(1977; their Figure 3.6) were

converted to the non-dimensional scaling parameters used in this work. In

Figure 3.15 the stability factor is plotted against (NR)'/' for NF/(STs) = 508,

NL = 250 and K' = 200. Discontinuities in the results taken from van de

Ven & Mason were present in the original figure. The light lines

correspond to this author's calculations for total strains of 0.01 and 1.

There is a strong dependence on the total strain with the small total strain

results showing a transition to a stabilized suspension. As the total strain

decreases the hydrodynamic flux decreases and double layer forces

become more important (see the discussion for Figure 3.11). The

comparison suggests that the transition from unstable to stable suspensions

may occur at a lower surface potential in the randomly varying flow.

Stability factors computed for the random linear flow are

comparable to calculations that have been previously obtained for steady

linear flows (Greene et al., 1994; van de Ven & Mason, 1977; Zeichner &

Schowalter, 1977; Adler, 1977). As the flow time scales decrease, the

suspension stability decreases because two approaching particles have

more opportunity for collision before the flow field separates the particles.

At the same time, as the total strain decreases the strength of the flow

decreases so the effects of double layer repulsion can be more significant
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Figure 3.15: Comparison of the stability factor obtained from the pair
diffusion approximation with stability factors obtained for stationary simple
shear as a function of NR (strength of the double layer repulsion). Thin
lines correspond to W values in the diffusive limit and the heavy line is
taken from van de Ven & Mason (1977). Curves are labeled with values of
the total strain. For this example NL = 250, K' = 200, NF/Sus = 508, and [3
=--1.
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in the random linear flow. The transition from unstable to stable

suspension occurs for a much lower surface potential in the diffusion limit.

3.5 Application to turbulent coagulation

The results obtained for coagulation in an isotropic, randomly

varying linear flow field can be used to estimate the turbulent coagulation

rate of particles that are small compared with the length scales of

turbulence, i.e., smaller than the Kolmogorov scale. In this section results

from direct numerical simulations of turbulence are used to calculate the

diffusivity for a pair of particles with diameters smaller than the

Kohnogorov scale. The analytical and numerical calculations of

coagulation in the previous sections can then be used to assess colloidal

stability in turbulent flows.

Before applying the results to the question of turbulent coagulation,

a brief review is provided of the implications of Kolmogorov's similarity

hypotheses (see Tennekes and Lumley, 1972). The tenets of the similarity

hypotheses allow estimation of the velocity and length scales of the

smallest turbulent eddies. By balancing the turbulent dissipation rate with

the viscous dissipation rate the Kolmogorov scales are obtained:

1] = (V3/E)" 4 , Vj = (cv)"4 and, P, = (E/v)'1 , where rl, V. and IP. are the

Kolmogorov length, velocity and velocity gradient scales, respectively,

while v is the kinematic viscosity and E is the turbulent dissipation rate.

For particles smaller than rj only the Kolmogorov scale eddies are

dynamically important for detennining the rate of particle collision because

they have the highest shear rates. Since turbulence at the Kolmogorov
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scale is approximately isotropic, the results obtained in Sections 3.2-3.4

can be applied by choosing the characteristic velocity gradient, I = r1-' and

setting the strain and rotation correlation times and magnitudes equal to

values typical for homogeneous isotropic turbulence (e.g., S2 = R2

1/22F9 2).

As a first step, estimates for the strain and rotation rate correlation

time are obtained and used to assess the suitability of the diffusion

approximation to turbulent coagulation. Pope and coworkers conducted

direct numerical simulations (DNS) of homogeneous isotropic turbulence

(Yeung & Pope, 1989; Girimaji & Pope, 1990; Pope, 1990) and calculated

the Lagrangian strain and rotation rate correlation functions. Artificial

forcing was used in their calculations to keep the turbulence simulation

statistically stationary. The computer simulations provided statistics on the

two-time Lagrangian velocity gradient autocorrelation function over

Taylor-scale Reynolds numbers, RA, ranging from 38 to 93 where

SuX/v, X = (u2/(aul/ax1 )2) /2 is the Taylor scale, u is the integral

velocity, ul is the velocity in the xj, direction and v is the kinematic

viscosity. At all Reynolds numbers Pope (1990) found that, while the

correlation time of the strain amplitude scales with the integral time scale,

the directional component of the strain rate is correlated over times that

scale with the Kolmogorov time. He noted that this rapid loss of

directional correlation disproves the persistence of strain hypothesis that

has been used as a modeling framework for conceptualizing relative

particle diffusion and mixing at the small scales of turbulence. According

to the persistence of strain hypothesis, originally proposed by Townsend



131

(1951), the local Lagrangian strain rate changes little over the Kolmogorov

time scale (Pope, 1990). In the context of particle aggregation, the

persistent strain hypothesis is tantamount to assuming the turbulent velocity

field is static during a collision event.

Non-linear regression of Girimaji & Pope's data leads to the

conclusion that, in turbulence, the strain and rotation rate correlation

functions decay exponentially, like:

<Sik(O) Sj 1(t)> = Silexp( -'-) (3.53)

where an analogous expression can be written for the rotation rate

correlation time by replacing all S's with R's. The exponential form fit the

strain rate data with an r2 = 99.6% and by numerically integrating the

autocorrelation data of Girimaji and Pope (1990) an estimate of 's, z2.3/1WT

is obtained. Similarly, an r2 = 95% is obtained when fitting the rotation

rate autocorrelation data to the exponential form shown in Equation 3.34

and a value of tR z7.2/1-' is estimated for the rotation rate correlation time.

3.5.1 Turbulent pair diffusivity and coagulation rate

It is important to remember that the total strain in turbulence is order

one compared with the time scale of the fluid motion. Yet, most previous

attempts at modeling the turbulent coagulation rate (Delichatsio &

Probstein, 1973; Camp & Stein, 1943; Saffinan & Turner, 1956) have been

based upon the persistence of strain limit so they are asymptotically valid

when the product of the Kolmogorov shear rate and its correlation time are

large.
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In contrast, the pair diffusion model for coagulation outlined in

Section 3.3 is valid in the small strain limit. From the definition of the

turbulent dissipation rate (e.g., P2 = 2S2 = 2R2) and the estimated values

for the strain and rotation rate correlation times taken from Girimaji &

Pope's DNS results, an expression for the turbulent pair diffusion

coefficient can be obtained using Equation 3.19. For comparison,

Lundgren derived an equation for the turbulent pair diffusivity in the

absence of hydrodynamic interactions by expressing the pair diffusivity as

an integral over the two-point Lagrangian velocity autocorrelation function

(Lundgren, 1981). He then rewrote the turbulent diffusivity in terms of the

two-point single-time Eulerian velocity correlation function using

approximations that he argued were valid in the limit of short and long time

differences. For statistically stationary homogeneous isotropic turbulence,

Lundgren arrived at the following form for the pair diffusivity at the

Kohnogorov scale:

D.t = r 21+2 (3.54)

Note that the diffusivity in Equation 3.54 is twice that shown in Lundgren's

original paper because of a difference in the definitions of the pair

diffusivity. Using Equation 3.17 and the estimates from DNS a value of

0.153 is found for the radial component of the turbulent diffusivity. By

contrast Lundgren estimates the value to be 0.149, about 3% smaller than

the result obtained here and well within the error of the numerical

integration of Girlinaji and Pope's (1990) DNS data. The analysis of the
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pair diffusivity in turbulence presented in this chapter shows that the

circumferential diffusivity depends on both the rotation and strain rate

correlation time scales. Lundgren's prediction for the circumferential

component underestimates the angular component of the pair diffusion

coefficient by a factor of 20 which suggests that the prior analysis did not

correctly consider the effect of rotation on the diffusion coefficient.

The rate of turbulent coagulation is obtained by substituting the

values for the strain and rotation rate correlation times into Equations 3.35

and 3.47. For non-interacting particles:

dC12 _ 9.2 iT O3 r C2 (3.55)
dt 5 1 1 C2

The derivation of the turbulent coagulation rate constant using the diffusion

approximation was first carried out by Levich (1962). In his analysis,

Kolmogorov's similarity hypothesis was used to deduce that the turbulent

pair diffusivity was proportional to r2 . The estimated turbulent diffusivity

was then used in a steady-state radial diffusion equation to obtain a form

similar to Equation 3.55, but Levich did not provide an estimate for the

numerical coefficient or examine the limits of applicability of the model.

Saffmian and Turner (1956) represented the turbulent velocity field

as a stationary, locally linear flow taken to be extensional. By considering

the turbulence to be steady over a coagulation event, Saffinan & Turner
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restrict their analysis to the large total strain limit - the opposite limit to

that considered in this manuscript. Assuming homogeneous, isotropic

turbulence and Gaussian statistics for the fluctuating velocity gradient,

Saffman and Turner (1956) derived the aggregation rate between two

particles with radii of a, and a2:

dCI,2 8 (7c)) 1/2r 3CwC- (3.56)dt 15 1c2

This prediction for the coagulation rate in the absence of interparticle

forces is similar in form to that obtained in the small strain limit (Equation

3.55) except that the numerical coefficient is about 4.5 times smaller.

To the author's knowledge, no attempt has been made to determine

the effects of hydrodynamic interactions and interparticle forces on

turbulent coagulation. Typically, researchers assume that the stability

factors obtained from trajectory analyses under laminar conditions of

simple shear adequately represent the effects of interparticle interactions in

turbulent aggregation (see for example, Valioulis et al., 1984). As shown

above while colloidal stability in a fluctuating velocity field is similar to

that obtained in simple shear, W increases with NF at a slower rate in the

random flow. Rates of aggregation can also be significantly smaller in

random flows because of the dependence on the total strain. Thus, the use

of simple shear as a surrogate for the turbulent flow field in the dissipation

subrange could lead to significant errors.
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3.6 Summary and conclusions

In this chapter an analysis is presented of hydrodynamic pair

diffusion and coagulation in a randomly varying isotropic flow field. The

velocity field is specified to be statistically stationary in time and a linear

function of position at separations comparable to the particle radius. The

strain and rotation rate components of the velocity gradient field are

allowed to fluctuate with different correlation times and the analysis is

restricted to flows with small strain amplitude where a pair diffusion

formulation can be used. The radial diffusivity is shown to depend

exclusively upon the rate of strain while the circumferential pair diffusivity

is a function of both the strain and rotation rates. Using a radial pair

probability conservation equation an analytical expression is derived for

the coagulation rate in the absence of interparticle interactions and

Brownian motion. Interparticle forces, hydrodynamic interactions and

Brownian motion are included by calculating a stability factor, W, that is

the ratio of coagulation rate for non-interacting particles to that with

interparticle forces, hydrodynamic interactions and Brownian motion. The

stability factor can be calculated numerically from a two-dimensional

quadrature. An asymptotic solution valid in the lubrication regime is

presented for non-Brownian particles that are influenced by hydrodynamic

interactions and non-retarded van der Waals forces.

The effect of retarded van der Waals attraction, double layer

repulsion and hydrodynamic interactions was examined by varying the six

non-dimensional parameters that fully characterize the aggregating system.

In general, increasing particle size and shear rate in the absence of double



136

layer interactions leads to increased colloidal stability. Increasing the

solution ionic strength (decreasing the double layer thickness) leads to an

abrupt decrease in the stability factor beyond which double layer repulsion

becomes negligible. Increasing shear causes a decrease in the stability

factor for the systems with significant double layer repulsion because the

higher shear rates allow the colliding particles to surmount the repulsive

energy barrier. The effect of surface potential at constant Debye length

was also examined. Again, increases in shear rate caused a commensurate

decrease in W. Finally, particles that are small compared to the double

layer thickness are shown to be very stable.

Numerical studies of coagulation between non-interacting particles

in strongly mixed chaotic lamninar flows indicate that coagulation rates in

chaotic flows are a monotonically increasing function of total strain. In the

small strain limit, when the fluctuating velocity field can be represented by

a pair diffusivity, the coagulation rates for non-interacting particles are

shown here to be proportional to the total strain. Compared to steady

linear flows with comparable shear rate, coagulation in the diffusive limit

for a random linear flow field is considerably slower. The stability factor

calculations obtained for coagulation in a randomly varying linear velocity

field are compared with those obtained for stationary linear flows (Green et

al., 1994; van de Ven & Mason, 1977; Zeichner & Schowalter, 1977;

Adler, 1984) and the stability coefficients in both simple shear and

hyperbolic extensional flow are found to be similar to those for the random

flow.
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The coagulation rate expression was applied to aggregation in

turbulent flows. The diffusion approximation to turbulent coagulation is

valid in the limit where the characteristic time for two particles to collide is

large compared with the flow evolution time (small total strain limit). In

contrast, the turbulent coagulation theory developed by Saffinan and

Turner(1956) applies to the opposite limit when the particle collision time

is short compared with the velocity field correlation time. DNS of

turbulence computed by Pope and coworkers show that the time scale of

the turbulent velocity gradient is between these two limits (Yeung & Pope,

1989; Girimaji & Pope, 1990; Pope, 1990), suggesting that the actual

coagulation rate may be intermediate between the predictions given in this

chapter and that of Saffinan and Turner (1956).
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CHAPTER 4:

TURBULENT COAGULATION OF COLLOIDAL PARTICLES*

4.1 Introduction

Turbulent-shear-induced coagulation is an important process leading

to the aggregation of colloidal particles in both engineered and natural

environmental processes. Turbulent mixing is heavily employed in water

treatment and the chemical industries to enhance the aggregation and

removal of fine particles. In natural aquatic systems many pollutants

associate strongly with particles and therefore considerable effort has been

focused on understanding the dynamics of particles in natural environments

(O'Melia, 1980).

Estuaries serve as an excellent example of natural systems in which

particle aggregation due to turbulence controls contaminant transport.

Polluted suspended sediment in river water mixes with sea water in the

estuary resulting in destablization and the subsequent aggregation of

colloidal particles. Large contaminated agglomerates form that can readily

settle through the water column and deposit onto the estuarine sediments

(Stummn & Morgan, 1981).

Given typical estuarine conditions, with turbulent dissipation rates

ranging from 0.002 to 0.7 cm2/s3 (Krone, 1970) and colloidal particles with

*Submitted to J. Fluid Mech. as BRUNK, B. K., KOCH, D. L. & LIoN,

L. W. 1997 Turbulent coagulation of colloidal particles.
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radii between 0.5 and 10 gtm and a density of 2.0 g/cm 3 (McCave, 1984),

scaling analysis incorporating coagulation rate constants summarized by

Pearson el al. (1984) can be used to ascertain the relative importance of the

various coagulation mechanisms. For 5 gim particles, coagulation rates

resulting from Brownian motion are estimated to be 14 to 2000 times

slower than turbulent shear coagulation for turbulent energy dissipation

rates between 0.002 to 0.7 cm2/s3 , respectively.

Turbulent coagulation also dominates over differential-settling-

induced coagulation when 5 prm particles with a density of 2.0 g/cm3

aggregate with particles ranging from 4.4 to 5.7 jim at low turbulence

levels and 2.5 to 8.4 jim particles at high turbulence levels. Furthermore,

the importance of differential settling decreases with decreasing density

difference between the fluid and the particles.

Turbulent acceleration can increase the coagulation rate of particles

due to differences in particle inertia. From the work of Saffman & Turner

(1956), the ratio of coagulation due to shear and particle inertia in a

turbulent flow can be calculated as a function of the particle relaxation time

(i.e., the time it takes an initially stationary particle to accelerate to the

fluid velocity), the relative density difference between the bulk fluid and

the particle and the turbulent dissipation rate. Again, when the parameter

estimates typical for estuarine conditions are used, turbulent shear

coagulation is calculated to dominate for similarly sized particles. At low

turbulence levels, the transition from turbulent shear to inertia dominated

collisions occurs for 5 jim particles interacting with particles less than 3.8

jim and greater than 6.2 jim. Since the importance of particle inertia
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decreases with the density difference between the particle and the fluid,

inertia driven coagulation is expected to be less important for more

neutrally buoyant, organic-based colloidal particles.

In general, scaling analysis suggests that coagulation caused by

turbulent shear is likely to control the aggregation process in estuaries for

like-sized colloids, neutrally bouyant particles with radii greater than one

micron.

Despite the importance of turbulent coagulation, only a limited

number of theoretical analyses have been attempted and very little

experimental work has been done to assess the applicability of existing

turbulent coagulation models. In this chapter the issue of analytical model

validity is addressed by performing computer simulations of turbulent shear

coagulation. The relative trajectory of particle pairs in isotropic turbulence

is analyzed using velocity gradient statistics taken from direct numerical

simulations of turbulence (DNS; Girimaji & Pope, 1990). Results from the

simulations are compared with models for turbulent coagulation that are

found in the literature (i.e., Saffinan & Turner, 1956; Chapter 3; Brunk et

al., 1997a).

Although several heuristic models for turbulent coagulation have

been proposed (Delichatsios & Probstein, 1975; Camp & Stein, 1943;

Casson & Lawler, 1990), the discussion presented here will focus on

models that attempt to represent the physics of turbulent coagulation. The

model developed by Saffinan & Turner (1956) yields an expression for the

turbulent aggregation rate that is valid in the limit of persistent strain where

the product of the characteristic strain rate and its correlation time (i.e., the
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total strain) is large. The author has recently investigated the opposite

limit where turbulent transport of coagulating particles can be likened to a

pair diffusion process (Chapter 3; Brunk et al., 1997a). Evidence from

DNS (Pope, 1990; Girimaji & Pope, 1990) suggests that the strain rate

field for isotropic turbulence is intermediate between these two limits. In

the intermediate regime, analytical expressions for the turbulent

coagulation rate are unattainable; thus, a computer algorithm is used to

simulate the coagulation of particles that are smaller than the length scales

of turbulence.

Figure 4.1 shows the standard coagulation problem where

calculation of the collision rate between monodisperse particles is of

interest. The coordinate system is placed in a Lagrangian reference frame

that moves with a test particle and relative position vectors connect the

centers of the test sphere and nearby particles. In this description, the

system is assumed to be sufficiently dilute such that only binary (1:1)

interactions occur. The coagulation rate is obtained by calculating the

number of two-particle collisions that occur between the representative test

particle at the origin of the coordinate system and other colloids. Doublet

formation is assumed to be irreversible so that the probability density for

pairs of free particles (P) approaches zero at the excluded volume surface:

r = a = 2a. At large distances from the test sphere (r -, co), the pair

probability of monodisperse particles attains its bulk value, P = Cl2, where

C, is the bulk concentration of singlet particles in the system.

Given the assumption of negligible doublet breakup, the initial rate

of doublet formation in a dilute suspension is:
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- kC2 
(4.1)

dt

where k is the coagulation kernel or coagulation rate constant and C2 is the

bulk concentration of doublet particles. The rate expression given by

Equation 4.1 assumes there are no particle sources in the system. A

consequence of the assumption that the suspension is dilute is that C2 and

C1 are independent of position on length scales greater than the particle

radius. That is, the time between collisions is much longer than the local

mixing time so that local fluctuations in the bulk particle concentration can

be neglected.

For the model simulations that follow, particle diameters are

assumed to be smaller than the Kolmogorov length scale (i.e., the length

scales of the smallest turbulent eddies), but large enough so the Peclet

number is large and Brownian motion can be ignored. Since the smallest

scales of turbulence have the highest shear rates (Tennekes & Lumley,

1972), they will dominate the coagulation process. The size and shear rate

of the smallest turbulent eddies is estimated by balancing the turbulent

energy flux from large to small eddies with viscous dissipation.

Characterizing the energy flux with the turbulent dissipation rate, E, and the

viscous dissipation with the kinematic viscosity, v, leads to the

Kolmogorov estimates for eddy length and velocity gradient:

( (1/4
= (4.2)
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1E ) 112 (4.3)

where rI is the Kolmogorov length scale and F,, is the Kolmogorov velocity

gradient.

In natural aquatic environments, such as an estuary, typical

Kolmogorov length scales vary from 1.5 mm to 350 gim (Krone, 1970),

while turbulence produced in flocculation tanks used for wastewater

treatment might have Kolmogorov lengths as small as 30 gm (O'Melia,

1980). The stipulation that the particles be smaller than the length scales

of turbulence is, therefore, applicable to all but the most intense turbulent

flows and the largest colloidal particles.

Recently Sundaram & Collins (1996) investigated coagulation of

finite-volume particles using DNS. Their calculations were restricted to

non-interacting particles with appreciable inertia (e.g., heavy particles

suspended in a gas phase). DNS revealed that inertia causes particles

whose density is greater than that of the fluid to accumulate in regions of

high local strain and low vorticity (Squires & Eaton, 1991; Wang &

Maxey, 1993). The extent of preferential accumulation depends on the

value of the Stokes number (St), which is a ratio of the particle response

time, (2pa2/9[t, where p is the particle density and [t is the fluid viscosity)

to the fluid time scale (L/u' where L and u' are the integral length and

velocity scale of turbulence, respectively) (Squires & Eaton, 1991). Inertia

is important at intermediate values of St, while at large Stokes numbers the
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particles are so heavy they are unresponsive to the turbulent flow field.

When St -, 0 the particles have no inertia and they follow the fluid motion

(Squires & Eaton, 1991). The calculations of Squires & Eaton (1991) and

Sundaram & Collins (1996) are primarily concerned with particles

suspended in air where Stokes numbers are large. In contrast, this research

focuses on computing the coagulation rate for aqueous colloidal

suspensions with no appreciable buoyancy. To the author's knowledge,

the limit of low particle inertia has not been investigated by DNS;

therefore, it remains impossible to determine the range of St over which the

well mixed assumption used in this thesis applies. For particles smaller

than the Kolmogorov length scale, the Stokes number based on the

Kolmogorov time scale (St,) would control particle segregation. Assuming

neutrally buoyant particles, Stn IPna 2/v, which is the Reynolds number

based on the particle size and the Kolmogorov shear rate. For particle

sizes less than 10% of rl, Stn < 0.01 suggesting that particle inertia can be

neglected and the particles can be assumed to be distributed

homogeneously throughout the turbulent flow.

The coagulation kernel, k, given in Equation 4.1, accounts for the

various transport mechanisms leading to particle collision (e.g., turbulent

shear, Brownian motion and differential settling), and the influence of

interparticle interactions such as van der Waals attraction, hydrodynamic

interactions and electrostatic double layer repulsion. Transport

mechanisms and interparticle interactions are usually separated by writing

the coagulation kernel as the quotient of an ideal rate constant, kV, that

ignores interparticle forces and hydrodynamic interactions and a stability
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factor, W, that incorporates the effects of these interactions (Russel et al.,

1989):

k - (4.4)W

Equivalently, the rate constant can be described in terms of a collision

efficiency, a = W 1, expressing the fraction of ideal collisions that actually

would occur when interparticle interactions are included.

Asymptotic expressions for k° in turbulence have been obtained in

the large and small total strain limits. Assuming the product of the

characteristic strain rate and its correlation time are large, Saffman &

Turner (1956) derive the coagulation rate constant of non-interacting

particles in stationary, homogeneous, isotropic turbulence. In the

neighborhood of a test particle, they propose that the local turbulent

velocity field can be represented as a pseudo-steady linear extensional

flow. The particle collision rate is then written as a flux integral over the

excluded volume surface area and is simplified by assuming isotropic and

Gaussian velocity gradient statistics. The resulting average coagulation

rate constant in the large strain limit is:

" 8- 1/2 (4.5)

In Chapter 3 of this thesis, the author extended the analysis of

Levich (1962) and calculated the coagulation rate in the limit of small

strain with and without particle interactions (Chapter 3; Brunk et al.,
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1997a). At small total strain, net particle movement is the result of many

uncorrelated velocity field fluctuations; therefore, relative particle

movement can be characterized with a pair diffusivity. This analysis is

restricted to small gap widths where the flow field is a randomly varying

isotropic linear flow with Gaussian statistics and separate rotational and

extensional correlation times. The turbulent coagulation rate constant is

found by solving a steady-state pair probability equation for the flux of

particles diffusing toward a test sphere (Chapter 3; Brunk et al., 1997a). In

the absence of particle interactions:

k0 = 47c (r' -Cs)Pr (13  (4.6)5-

This prediction has a functional form similar to the large strain limit

determined by Saffinan & Turner, Equation 4.5, except for the additional

dependence on the total strain, F1 -s. It can be further shown that the

effects of finite Peclet number, hydrodynamic interactions, and interparticle

forces may be easily included at the small strain limit (Chapter 3; Brunk et

al., 1997a).

Evidence from DNS suggests that the total strain in isotropic

turbulence is order one. Using DNS, Pope and coworkers (Pope, 1990;

Girimaji & Pope, 1990; Yeung & Pope, 1989) investigated one-point, two-

time Lagrangian autocorrelation functions of the strain and rotation rates in

homogeneous, isotropic turbulence over Taylor-scale Reynolds numbers

from 38 to 93. [N.B. the one-point, two-time Lagrangian strain rate

autocorrelation function means the covariance of the strain rate at two
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different times for the same fluid element. The Taylor-scale Reynolds

number is defined as R, = u',XT/v where IT = ((u /)2/((au/ax,)2))1/2 is the

Taylor scale and ul is the velocity in the x, direction.] At all Reynolds

numbers, Pope (1990) found that, while the correlation time for the

amplitude of the Lagrangian strain rate scales with the integral time scale,

the strain rate loses directional information in approximately a Kohnogorov

time. This result contradicts the long standing hypothesis of persistent

strain in turbulence. According to the persistent strain hypothesis

(Townsend, 1951; Pope, 1990), the local Lagrangian strain rate scales with

the integral time scale. In the context of particle aggregation, this

hypothesis forms the basis of Saffinan & Turner's (1956) analysis and is

equivalent to assuming the flow field remains static over a collision event.

Based on the DNS results, it is reasonable to expect that neither the

large nor small total strain asymptotic limits will adequately represent

coagulation in isotropic turbulence. Estimates of the turbulent coagulation

rate at arbitrary strain must be determined by simulations before the

regions of validity for the asymptotes can be established. Below, in

Section 4.2, a simulation technique is developed to compute the

coagulation rate for arbitrary total strain and total rotation. In Section 4.3

results are presented for simulations conducted without the presence of

particle interactions for arbitrary total strain, and compared with results for

strain rates of practical interest with the commonly used asymptotic limits.

Finally, in Section 4.4 the influence of hydrodynamic interactions and van

der Waals attractions is considered in the coagulation simulations. The

collision efficiency is computed and the effect of varying the total strain
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and the relative magnitude of the van der Waals attraction relative to

viscous interactions is examined.

4.2 Computer simulation: development and method

To evaluate the utility of the large and small strain limiting cases, a

computer simulation is developed here for coagulation in a randomly

varying flow field with statistics selected to reproduce those for Gaussian

isotropic turbulence. The evolution equation for the relative motion of a

pair of particles in isotropic turbulence is derived here and the constitutive

relations for the fluctuating velocity gradient and interparticle potential are

presented. In the forthcoming analysis, the particle-separation-based

Reynolds number, Re = Ur/v (where U is the relative particle velocity and

v is the kinematic viscosity), is assumed small so that Stokes equations

apply to the relative particle motion. Coagulation is controlled by relative

particle motions at small separations where the velocity field is linear in the

separation distance. In the following discussion the fluctuating velocity

gradient will be described in terms of a Fourier series with coefficients and

frequencies chosen randomly to satisfy the constraints of Gaussian

isotropic turbulence. The effects of retarded van der Waals attraction and

hydrodynamic interactions are also considered in the algorithm.

Generalization to other spherically symmetric interparticle potentials can

be made in a similar manner.

Assuming inertia is negligible, the evolution of the relative particle

separation can be described as a superposition of the motion driven by the
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linear flow field and the velocity caused by a radially acting interparticle

potential:

drCSrk.k MY (r) (4.7)
dt 6nk(t)rk - ajkk 6itpa ar.

where rik(t) is a randomly fluctuating velocity gradient tensor, Cij(r) is the

hydrodynamic mobility function for two particles in a linear flow field

(Batchelor & Green, 1972), Sjk = /2(-'jk + rkj) is the strain rate, Mij(r)/6iiga

is the relevant hydrodynamic mobility function for two particles

experiencing equal and opposite forces (Batchelor, 1976) and (4(r) is the

radially acting interparticle potential. The magnitude of the fluctuating

velocity gradient is assumed to be large compared with mean shear so only

the fluctuating motions are dynamically important in detennining particle

movement and coagulation.

Batchelor and Green (1972) provide an explicit tensor expression for

Cii in terms of the particle separation vector and two scalar functions of the

relative position and particle radius ratio, namely:

Cy = A(r) rr'r + B(r) . (4.8)

where A(r) and B(r) are non-dimensional functions of radial position and

radius ratio that are tabulated by Batchelor & Green (1972) and Kim &

Karilla (1991). The hydrodynamic relative mobility tensor scaled with the

Stokes drag has the following form (Batchelor, 1976):
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M [- -G(r) + ( i-)H(r) (4.9)

where G(r) and H(r) are non-dimensional functions of relative position and

particle radius ratio that are tabulated in Batchelor (1976) and Kim &

Karilla (1991).

4.2.1 Characterization of .(t)

The fluctuating velocity gradient tensor, 1ij(t), is a small scale

quantity of turbulence with an energy spectrum that peaks in the dissipation

subrange of turbulence. Since directional biases imposed at the large

scales are lost during the turbulent energy cascade process, Kolmogorov's

similarity hypothesis applies and 1-ik(t) may be assumed to be isotropic.

For the following analysis, the probability distribution function (pdf) of

IPik(t) is approximated as Gaussian. It has been established that rare events

attributed to internal intermittency lead to the formation of exponential tails

on the velocity derivative pdf (Pope, 1996). Since exponential decay is

much slower than the tailing of the standard Gaussian distribution, this

leads to higher order moments, such as the superskewness (the 6th moment

of the velocity gradient), that are orders of magnitude larger than values

predicted from a normal distribution (Pope, 1996). However, experimental

evidence shows that the exponential tails of the velocity gradient

distribution contribute negligibly to lower order statistics such as second

moments. The analysis of turbulent shear coagulation in the large and

small total strain limits (Saffinan & Turner, 1956; Chapter 3; Brunk et al.,
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1997a) depends only on the second moment. Because intermittency has a

negligible effect in the two asymptotic limits, the effects of intermittency

are also anticipated to not strongly influence turbulent coagulation at

intermediate total strains.

Since a joint-normal distribution is assumed for Pik(t), only the mean

and covariance tensor must be specified to fully define the pdf of Fik(t).

Following the work of Kraichnan (1970), F1i(t) is written as a temporal

Fourier series with random Fourier coefficients and frequencies selected

from specified pdfs (see below) to reproduce the two-time Lagrangian

statistics of the fluctuating turbulent velocity gradient. As the number of

terms in the Fourier series increases, the velocity gradient field

automatically becomes Gaussian by the Central Limit Theorem.

The fluctuating velocity gradient is written as a random Fourier

series for the rate of strain tensor, Sik(t), and the rotation rate tensor, Rik(t)

= /2(rik - P]). The dependence of Fik(t) on the strain and rotation rates is

made explicit since they evolve according to different time scales (Girimaji

& Pope, 1990). The Fourier series representation of Fik(t) is:

IFk(t) - exp (i ost) + /•k exp(i' t4t)1 (4.10)
n=1

where N is the number of terms in the Fourier series, i = (n1)1I2, S~k and

R/ik are independent Gaussian random variables with zero mean that

represent the strain and rotation components of the turbulent velocity

gradient, and s and CORn are random frequencies chosen from pdfs that

reproduce the desired strain and rotation rate autocorrelation finctions.
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Expressions for the covariance of the Fourier coefficients and the

pdfs of the frequencies are developed below. An explicit derivation is

provided of the relations for the strain rate. The comparable equations

involving the rotation rate can be found analogously. Taking the

symmetric part of Equation 4.10 yields:

N

S&k(t) S= exp( _in t t) (4.11)
n=1

Multiplying Equation 4.11 by Sjl(t + -r) and taking the ensemble

average leads to an expression for the strain rate autocorrelation function:

< sik(°)sýJ (c) > gn Mkj
k)m)=l exp(in6)s T) (4.12)

where stationarity has been assumed (i.e., the statistics of the fluctuating

velocity field are independent of the time origin) and the * denotes the

complex conjugate. Next, the tensors, Si and m, ed to be

independent for n f m and the Fourier coefficients and Csm are assumed to

be independent random variables:

N

= <SkSjt>fexp(lxCns-r)P(ns)dns (4.13)
n=1

where P(•Of) is the pdf of Can. The Fourier transform of Equation 4.13 is:

g '(S< &(0) S 3.l(")>) -

Nexp(inran sr)exp(_-itwsr)p(Gos)dnc (4,14)

n=1l
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Orthogonality of the complex exponentials greatly simplifies Equation 4.14

to:

N(<S(O)j(k)>) = N<Sk>P() (4.15)

The autocorrelation function for the strain rate in isotropic

turbulence derived in the Appendix D is:

<Slk(O)SJI(t)> = S.,.lexp _-J (4.16)

where Sikjl = <Sik(0)Sjl(0)> is the covariance of the strain rate given by

Equation D.4. The exponential decay law given in Equation 4.16 was

found to represent the DNS data for the strain rate autocorrelation function

accurately (Girimaji & Pope, 1990). Non-linear regression of Girimaji &

Pope's (1990) data based on Equation 4.16 resulted in a strain rate

correlation time, -s, of 2.3/FX with an r2 of 99.5%. Similarly, the

exponential decay fit the rotation rate autocorrelation function to yield a

rotation rate correlation time, TR, of 7.2/1' with an r2 of 95%. The Fourier

transform of Equation 4.16 gives:

C: 2 - S,=l
1 + ('tCWs-s)2  (4.17)

Comparing Equations 4.15 and 4.17, the pdfof j is chosen to be:

-Us
P(@,s) = (4.18)1 + (7r (oS -Cs)2
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such that it satisfies the normalization condition, namely:

f P(6)) d = 1 (4.19)

The remaining terms in Equations 4.15 and 4.17 specify the

covariance of the random Fourier coefficients for the extensional flow

component as:

ikj N (4.20)

The strain rate autocorrelation function, Equation 4.16, is a real, even

function of time leading to the constraint that the real and imaginary parts

of Sikare independent. For simplicity the variances of the real and

imaginary parts are assumed to be equal. These restrictions on the

statistics of Sik and the assumption of equal variances for the real and

imaginary particles imply that if:

Sik = Aik + iBik (4.21)

then,

<AikBhlI> = <BikAh•> = 0

<Aik4.lh> = <BkBýI> = SikjI (4.22)
N
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Similarly, the pdf of )R and the variance of <Rik Rjl> can be found.

Final results for the rotational component of the Fourier series may be

obtained by replacing the S's in Equations 4.11 to 4.22 with R's.

For each realization of the random flow, the Fourier coefficients

defined by Equations 4.10 were randomly picked from a joint normal

distribution with zero mean and a variance satisfying Equations 4.20 to

4.22. Similarly, the random frequencies for the specified strain and

rotation rate correlation times were determined from the pdfs defined in

Equation 4.18. Uniform and normally distributed random numbers used in

describing a realization of Fik(t) were chosen using algorithms supplied in

the ranlib library from NETLIB (Brown & Lovato, 1996).

The Fourier series included enough terms so that in the limit of many

realizations, the specified second-order statistics of Fri(t) were obtained.

Figure 4.2 shows three components of the velocity gradient autocorrelation

coefficient calculated by averaging 2,000 realizations of P1j(t) when N in

Equation 4.10 was 200. The solid lines are calculations derived from DNS

for homogeneous isotropic turbulence (see Appendix E; Girimaji & Pope,

1990) and the symbols represent results obtained using the Fourier series

representation. The simulated fluctuating velocity gradient had

autocorrelation functions that quantitatively agree with the velocity

gradient autocorrelation coefficients obtained from DNS.
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Figure 4.2: Three components of the fluctuating velocity gradient
autocorrelation function as obtained by averaging 2000 realizations of the
velocity gradient Fourier series representation. The random velocity
gradient was represented by 200 Fourier modes. Components shown are
<r111 11>1/]p, 2 (0), < 1" 11- 22>/1-92 (X), and <1 12r1 2>A1p 2 (r-). The simulation
results show close agreement to the calculations based on DNS (solid
lines).
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4.2.2 Constitutive relation for the interparticle potential

A van der Waals attractive potential corrected for retardation was

used for the interparticle potential included in the equation of motion

(Equation 4.7). Van der Waals attractions result from induced-

dipole/induced-dipole interactions between neighboring atoms. The

pairwise sum of these attractions over a macroscopic body leads to a

significant attractive potential that decays rapidly over distances

comparable to the particle radius (Russel et al., 1989). Due to the finite

propagation speed of electromagnetic waves, dipole/dipole correlations

between interacting atoms become out of phase at distances greater than

the London retardation wavelength, I, which further reduces the dispersion

forces. In this work X is set equal to 100 nm (van de Ven & Mason, 1977;

Davis, 1984) in qualitative agreement with measurements (Suresh and

Walz, 1996). Schenkel & Kitchner (1960) provide an analytical

approximation for the retarded van der Waals potential given by:

A H
kvdw AH-for ý<4/NL and, (4.23)

12(ý + 0.885NL 2)

(A/,H 4.9 _ 8.68 4.72 (
vý 15 NLC 45N2•2 105N33.2

for C > 4 /NL and C o 1. In Equations 4.23 and 4.24, C = (r-2a)/a is the gap

width scaled by the particle radius, AH is the Hamaker constant, and NL is

the diameter of the two particles scaled by the London retardation
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wavelength: NL= 2 7a/X. These approximate expressions for the retarded

van der Waals potential are valid in the limit of small separations (i.e., the

lubrication regime). ConstrainingX << o/2, so that van der Waals attraction

decays in the lubrication regime, leads to the restriction that NL )) 47,

which is satisfied for all the particle sizes examined in this chapter.

4.2.3 Scaling

Scaling of Equation 4.7 is accomplished by normalizing the particle

separation, ri, with the particle radius, the time with the Kolmogorov time,

and the velocity gradient with the Kolmogorov velocity gradient. Since the

van der Waals attraction becomes significant for gap widths comparable to

the London wavelength, the gradient of the potential scales with AH/ 4X.

The final form of the equation of motion is:

dr _ .Pk(t)rk NL 4(r) (4.25)
dt krk - 8Ns

where Ns is defined in Table 4.1 as the ratio of viscous to van der Waals

forces. For the remainder of this chapter scaled variables are utilized.

Table 4.1 lists the expected magnitudes of the scaled paramneters assuming

an aqueous dispersion of 1 to 100 gm diameter colloidal particles with

]P=0 .1 to 1000 s-' and AH = 10-19 to 1021 J.

4.3 Turbulent coagulation for non-interacting particles

4.3.1 Simulation procedure

Simulations at arbitrary total strain and rotation were conducted in

the absence of particle interactions to compare with the asymptotic limits
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Table 4.1: Non-dimensional parameters and their typical magnitudes

Parameter Interpretation Magnitude

tcs'., 1sn Total strain (rotation) 0 to o

NL = 47ca/Xk Particle radius to London 102 to 10'
retardation wavelength

Ns = Viscous to van der Waals o=liim: 10' to 10'
127,ta 3Fr/AH forces o=100l m: 103 to 109
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provided by Saffman & Turner (1956) and Brunk et al. (1997a; Chapter 3).

The general simulation approach began by generating a realization of the

random linear flow using the Fourier series method described in Section

4.2. The most obvious way to proceed would then be to create particles at

the outer simulation boundary such that the constant bulk concentration

was maintained. Numerical integration could then be used to track the

position of the particles so that their rate of collision with the test sphere

(as illustrated in Figure 4.1) could be determined. However, since most

particles in the bulk fluid (at r = co) do not collide with the test sphere in

this approach, the efficiency of the numerical calculations would be low.

The efficiency of the computer simulations can be greatly improved

by running the simulation backward in time. Instead of creating particles at

r = r- and calculating the collision rate with the test particle, the particles

are created at r = o and the simulation calculated the particle flow rate

through the outer simulation boundary. Since the conservation equation for

non-interacting particles is linear and time reversible, the flux calculated in

the time reversed simulation is equal in magnitude to that obtained using

the conventional boundary conditions shown in Figure 4.1.

In the absence of particle interactions, the equation of motion,

Equation 4.25, for the particles reduces to:

dr,
S- =..(t r (4.26)

dt

indicating that the particles follow the fluid motion. The only physical

parameters that influence the coagulation dynamics in this case are the total
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strain and total rotation. In turbulence, the ratio of the strain rate to

rotation rate is fixed because the turbulent dissipation rate is partitioned

equally between the strain and rotational flow components; consequently,

the effect of varying this ratio was not considered in the numerical analysis.

For each turbulent coagulation simulation, a unique realization of the

spatially linear flow was generated using the Fourier series method outlined

in Section 4.2.1. During each time step the simulation checked to see if a

particle should be created at the excluded volume surface. In the absence

of interactions, particles follow the fluid motion; therefore, the flux of pair

probability at the particle surface is proportional to C1
2(u-n) when (u-n) > 0

and the flux is zero otherwise. (Here, n is the outward pointing unit vector

normal at the randomly chosen location, and u is the local velocity.) At

locations of high local flux, the probability that a particle enters the near

field around the test particle is high, while the probability that a particle is

swept into the simulation domain is low in regions of low volumetric flux.

The probability of creating a particle is therefore proportional to the

volumetric flux at the randomly chosen location:
P - u.n

Pcreation (u. n (4.27)

where Pcreation is the probability of creating a particle, and (u'n)m.x is the

maximum volumetric flux that occurs at any position on the surface, r = j,

and at any time throughout the simulation. In the simulations, the

maximum volunetric flux was estimated as (u'n)MAx ; O<1- ,2>1/2 and then

refined by trial and error. The final estimate for (u'n)MAx was large enough
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so that high shear fluctuations in the velocity gradient field would not lead

to particle creation probabilities greater than 1. To evaluate Equation 4.27,

the simulation selected a random position on r = a using the acceptance-

rejection technique developed by von Neumann (1951) and computed the

volumetric flux at the random location. If the calculated Pcreation was

negative, a particle was not created since the volumetric flux was inward.

For positive probabilities, the simulation created a particle if a uniform

random number less than Pcreation was generated.

Although many particles existed within the control volume at any

time, only encounters between a particle and the test sphere were

considered. That is, the particles that were in relative motion around the

test sphere passed through one another. In the actual physical application

with dilute particle suspensions, the volume fraction of coagulating

particles is very small so the likelihood for three-particle encounters is

negligible. Simulating coagulation with higher volume fractions that

considered only two particle interactions enhanced numerical efficiency

while still reflecting the correct physics for a dilute suspension.

For each particle within the simulation domain, the equation of

motion, Equation 4.26, was integrated numerically using a fifth-order

Runge-Kutta algorithm with adaptive time step control. The maximum

time step allowed was set at the period of the fastest Fourier mode, so the

Runge-Kutta scheme resolved this mode with a minimum of five

intermediate time steps. The permissible integration error was established

by balancing the penalty for evaluating Equation 4.10 at many time steps

with the requirement that non-interacting particles follow the stream lines
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of the flow. Descriptions of the programs are given in Appendix E. To set

the maximum integration error, calculations performed in a steady strain

field were used. Ideally in the steady flow all of the particles should reach

r = r_ since they are created in regions of outward going flux. When the

integration error was too large, some particles crossed the stream lines of

the flow and returned to the test sphere. A maximum local integration

error equal to 1% of the relative particle separation distance was found to

eliminate streamline crossing.

Particles that reached r = r_ or returned to r = a were removed from

the simulation. The average particle flow rate through the system, Q, was

calculated as the total number of particles that reached the outer simulation

boundary divided by the total simulation time. Statistics on Q and the

radial pair probability density profile were obtained at intervals of -c_, the

characteristic time for a particle to travel from r_ to a. In the large total

strain limit, -r_ scales with the Kolmogorov time; however, in the diffusion

limit it can take much longer for particles to reach the test sphere. When

diffusion dominates the system, -r_ is estimated by relating the radial

components of the turbulent diffusivity given by Equation 3.20 to one-half

of the time derivative of the mean square displacement to obtain (Russel et

al., 1989):

1ld<rZ> _ sF•
-1 2 <r2> (4.28)
2 dt 15

This ODE for the mean square displacement was integrated to estimate the

characteristic time for particles to diffuse from r = o to r = r_ as:
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. In (4.29)<(j2>

In the computer simulations, characteristic times were estimated for both

the small and large total strain limit, and the longer of the two was used as

"too for the simulation.

Each realization of the flow field was simulated until the particle flux

at the excluded volume surface and the outer simulation boundary differed

by less than 2% from its value at the previous -. A simulation typical

achieved steady state in less than 20 characteristic times.

At steady state, the net flux of particles entering at the surface of the

excluded volume (r = Y) is constant and can be written as:

Cl<u'n> 1 2 (< > (4.30)Gio (u -n)mAx (.0

The right-hand side of Equation 4.30 can be interpreted as the product of

the maximum particle flux at the excluded volume surface for the test

particle (i.e., the maximum particle flux is one particle created over the

surface of the excluded volume per time step or 1/to2) and the average

probability of creating a particle during a time step. Solving for C1 yields:

C1 = 2(un) (4.31)

The coagulation kernel for each realization was calculated as = Q/C1 .
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For each set of system parameters the coagulation rate constant was

obtained by ensemble averaging over sufficient independent realizations to

achieve the desired level of accuracy. For the simulations with non-

interacting particles, ensemble averaging continued until the standard

deviation of k° was less than 2% of its mean value. The number of

realizations required to achieve good statistics varied strongly with total

strain. For total strains less than 1, as few as 10 realizations were needed,

while at total strains greater than 10, nearly 1000 realizations were

required to achieve low statistical errors. At small total strain, particles

experience a rapidly fluctuating flow so that net particle movement is the

result of many uncorrelated normally distributed velocity gradient fields.

In effect, coagulation results are time and also ensemble averaged in this

limit. In contrast, at the large strain limit, the flow field varies slowly and

particles experience a nearly stationary flow; thus, obtaining good statistics

depended solely on ensemble averaging over many realizations.

Along with the parameters summnarized in Table 4.1, the outer

simulation boundary, r_, the maximum volumetric flux at r_ and the number

of Fourier modes, N, were specified at the beginning of a simulation.

Initial computations were conducted to investigate the effect of the

simulation parameters on the reported results. For most coagulation

simulations, the Fourier series used to represent the fluctuating velocity

gradient field was truncated at 300 Fourier modes. The effect of N was

evaluated by simulating isotropic turbulence (ts-n = 2.3 and -Rl-' = 7.2)

while varying the number of components in the Fourier series from N = 25

to N = 400. For this simulation series, the maximum particle flux was held
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constant and each data point represented the average of 100 realizations.

To facilitate comparison, statistical fluctuations were reduced by starting

each member of the simulation set with the same random number generator

seeds. In this way, velocity gradient field Fourier modes present in all the

simulations were the same and the random numbers sampled when

introducing new particles were identical.

Figure 4.3 summarizes the results by plotting normalized coagulation

rate against the number of elements in the Fourier series. The error bars

denote +/- one standard deviation. The normalized rate constant, k,

monotonically increased towards an asymptotic value as N was increased.

The normalized coagulation rate rose 3.7% when increasing N from 25 to

400 while k grew only 0.4% when N doubled from 200 to 400. Statistical

error decreased with increasing N, from a coefficient of variation (i.e., the

standard deviation divided by the mean) of 1.4% at N = 25 to 1.2% at N =

200, and to 0.9% at N = 400. The decrease in statistical uncertainty was

presumed to occur because the pdf of each flow realization was better

approximated by a Gaussian distribution at large N. Given the magnitude

of the coefficient of variation for k0, the marginal improvement gained from

increasing N = 200 to N= 400 was not deemed to be significant.

Consequently, N's between 200 and 400 were used in the simulations

reported below.

The outer simulation limit was chosen to minimize boundary effects.

In the limit of large total strain, curved stream lines that exit and reenter the

simulation control volume may exist. Since particles that exit the

simulation boundary cannot reenter, this would lead to a higher than
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Figure 4.3: The effect of N (number of Fourier modes) on the ensemble
average of the turbulent coagulation kernel for 100 realizations of the
system. Error bars denote +/- one standard deviation.
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expected net flux through the outer simulation boundary. Simulations

conducted in the persistent strain limit for r-0 ranging from 5 to 30 resulted

in computed coagulation rates that were not statistically different.

Therefore, recirculating stream lines broken by the finite simulation

boundary were not consequential when estimating the collision rate for r- >

5.

The effect of the finite simulation volume is anticipated to be largest

in the limit of small total strain where the turbulent coagulation process is

diffusive. To compute the boundary effect in the small total strain limit, the

radial component of the pair probability equation is solved with absorbing

boundary conditions at the inner and outer simulation boundary (see

Chapter 3 or Brunk et al., 1997a). The resulting steady state coagulation

rate constant normalized by the particle radius and Kolmogorov shear rate

is:

ko = 32 7t s rr (4.32)
5 3

The term in brackets is the contribution of the finite outer boundary to the

calculated coagulation rate constant. For most simulations discussed

below, r_ = 10. With r. = 10, the coagulation kernel in the diffusive limit

increases about 0.8% above that for an infinite domain. An error of 0.8%

is negligible compared to the statistical error in the calculations and has

been ignored in the ensuing analysis.
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At intermediate strain the effect of the outer simulation boundary

was surmised to lie between the large and small strain extremes; therefore,

the magnitude of boundary effects at the small strain limit was used to set

an appropriate outer simulation boundary so that the outer boundary had a

negligible influence on the numerical calculations.

4.3.2 Simulation results

In this section the effect of varying the total strain and rotation on

the coagulation rate is discussed and the simulation results are contrasted

with the analytical solutions for large and small total strain limits that are

summarized in Section 4.1. Additional simulations are provided that

investigate the affect of the total rotation on the rate of particle coagulation.

Sample particle trajectories at large, intermediate and small total

strain are illustrated in Figures 4.4 to 4.6 for non-interacting particles in the

pseudo-steady limit (trPn -0o, TRFg --o; Figure 4.4), for isotropic turbulence

(s1P. = 2.3, rRFT) = 7.2; Figure 4.5) and in the diffusion limit (-sPs -0, TR-q

-'0; Figure 4.6). At large values of the correlation time the flow is

persistent and the particle motion appears steady (Figure 4.4). Comparing

Figures 4.4 through 4.6 shows that, as the correlation time decreases, the

flow field becomes more random as evidenced by the increasingly tortuous

motion of the particles. For the examples shown, the time between

collision increased from 6.2/]P,, to 32/Xu as the flow correlation times

decreased from - toward 0. The trajectory at the small correlation time

(Figure 4.6) is shown every 1/(2Pr) time step. The particle motion in

Figure 4.6 has an obvious random component indicating that the motion is
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Figure 4.4: Sample trajectory for the relative motion of two particles in a

pseudo-steady linear flow (i.e., ¶sIF1 -,oo, TRI-r-"00).
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Figure 4.5: Sample trajectory for the relative motion of two particles in

isotropic turbulence (i.e., t~sJ'1 2.3, -uRP = 7 .2 ).
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diffusive. Isotropic turbulence, illustrated in Figure 4.5, has characteristics

between the pseudo-steady and diffusive limits; therefore, it shows

behavior between these two extremes.

Figure 4.7 illustrates how the coagulation kernel normalized with the

Kolnogorov shear rate and particle radius changes when tsP1 and tRrP1 are

varied while maintaining -tsr,1/tcRl, 1 = 0.32, corresponding to isotropic

turbulence. The square symbols represent the simulation data, and unless

otherwise shown, the standard deviations of the data points are smaller

than the symbols. The symbol denoted by the solid square represents the

expected physical state for isotropic turbulence as estimated from DNS

data (TsF 1 = 2.3 and -cRl- = 7.2). Also shown are the asymptotic limits of

large (thick solid line) and small (thin solid line) total strain. At small total

strain the pair diffusion fonnulation (Chapter 3; Brunk et al., 1997a), given

by Equation 4.6, is valid and k = 32nit-ts 1 /5 in normalized form. The

simulations reach 95% of the pair diffusion limit by ;P1n = 0.115 (see

Figure 4.7). With increasing total strain, the simulation results increase

until, at a total strain of about 10, the calculated kV levels off and becomes

independent of the applied total strain. The large total strain asymptotic

limit was estimated by running simulations with an infinite total strain and

rotation (i.e., the flow is stationary). At large total strain (thickhorizontal

line on Figure 4.7) kV = 9.896 +/- 0.0805. By trP 1 = 23 and tr 1 = 72 the

simulations are within 98% of the large total strain asymptote.

The Saffinan & Turner model's prediction in the large strain limit,

Equation 4.5, is kV = 10.36 in non-dimensional form and is shown as the

dashed line on Figure 4.7. It is evident that this model overestimates the
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Figure 4.7: The effect of simultaneously varying rsrn and TRrl on the
normalized turbulent coagulation rate constant. In these simulations the
ratio of total rotation to total strain was fixed at 3.13 as obtained from an
analysis of the DNS data. The square symbols represent simulation data
with the filled square being the prediction for isotropic turbulence (usrn =
2.3, tRFr = 7.2). Unless shown, the +/- one standard deviation error bars
on the simulation results are smaller than the symbols. Asymptotic limits
for small total strain (thin line), large total strain (thick line), and the
Saffinan & Turner (1956) prediction (dashed line) are also shown.
Simulations performed at infinite total strain and rotation are shown with
(thick solid line) and without (A) the effects of rotation. An interpolation
of the asymptotes shown as the dotted line closely approximates the
simulation data.
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actual coagulation rate in the large strain limit by about 5%. A z-test

shows that the difference between the infinite total strain simulation results

and the Saffmnan & Turner model's predictions is statistically significant (p

value = 108). In Saffmnan & Turner's theoretical analysis the local

turbulent velocity field is represented as a linear irrotational flow, while the

simulations described here include both strain and rotational components of

the velocity field. Considering the effects of strain and rotation separately,

one expects the rate of coagulation to be independent of rotation because a

solid body rotation, by itself, does not cause a net flux of particles towards

the test sphere. The simulation results, however, indicate that the effects of

rotation and extension are not superimposable in coagulation. To confirm

this possibility, computer simulations were run at infinite total strain in a

purely extensional flow. The ensemble averaged coagulation rate, shown

by the triangle on Figure 4.7, falls on the Saffinan & Turner prediction and

a z-test reveals that the simulation prediction for kV is not statistically

different from the Saffman & Turner prediction of 10.36 (p value = 0.46).

When simulating an irrotational flow, the computed turbulent coagulation

agrees with the Saffman & Turner large total strain asymptote; therefore,

the addition of rotation must decrease the turbulent shear coagulation rate.

The reason that strain and rotation are not superimposable is that the

combination can lead to particle trajectories that leave and later return to

the excluded volume surface and thus contribute no particle flux. Although

one can superimpose strain and rotation when calculating the flow into

r = a, adding rotation to the pure straining flow field leads to recirculating

trajectories that have no net contribution to the coagulation rate. It follows
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that the coagulation rate is overstated in an analysis that neglects rotation.

This effect is explored in more detail below.

For isotropic turbulence (trsF, = 2.3 and "rRrl- = 7.2), k' = 8.62 +/-

0.02 for the normalized coagulation kernel. The Saffinan & Turner model

prediction of ko = 10.35 overestimates the true coagulation rate by 20%.

Similarly, the diffusion approximation, Equation 4.6, evaluated at -IsI'n =

2.3, estimates the normalized coagulation rate to be 46.24, approximately 5

times larger than the actual value. Although both asymptotic limits fail to

predict the turbulent coagulation rate for isotropic turbulence, they can be

used to construct an interpolation of the simulation data. A hyperbolic

approximation of the following form can be used to interpolate between the

asymptotic solutions:

1 + Q 1T P, (4.33)

Applying the small and large total strain asymptotic limits to Equation 4.33

leads to PI = 32xT/5 and Q1 = 0.657r. This interpolation, shown as the

dotted line in Figure 4.7, closely approximates the simulation data with an

error of • 5%.

Perhaps one of the most interesting aspects of these results is that

the addition of rotation can cause a decrease in the coagulation rate. The

effect of rotation has been previously identified in stationary linear flows

(Greene et al., 1994; Zeichner & Schowalter, 1977). Zeichner &

Schowalter (1977) derive the coagulation rate in a uniaxial extensional

flow (a pure strain field) and compare the results with coagulation in
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simple shear (a flow that contains rotation) with and without interparticle

interactions. For the same rate of strain, they find that the k° for simple

shear is about 3.5 times smaller than the kV calculated for uniaxial

extension. In the same vein, Greene et al. (1994) note that linear flows

with high vorticity have closed streamlines and that these closed

streamlines can be expected to substantially decrease the kinematics of

particle aggregation. Since the turbulent flow field in the neighborhood of

a test particle can be conceptualized as an ensemble average over all

possible linear flows, one would expect the coagulation rate to be lower

than is predicted in the absence of rotation.

The correlation time for the rotation rate can also be anticipated to

influence the coagulation rate. When the rotation is persistent (i.e., the

total rotation is large) recirculating streamlines present in the flow can be

expected to endure and thus the coagulation rate would be lower.

Conversely, when the rotation rate correlation time is small, the location of

streamlines that return to the excluded volume fluctuates and the effect of

the curved streamlines is expected to be mitigated. Numerical simulations

run at -srn = 1.15 and various tCRFP illustrate the effects of persistent

rotation. Shown in Figure 4.8 are the normalized coagulation rate

constants for values of TR ranging from 0 to 720. Each simulation set

started with the same random seeds to facilitate comparison and enough

realizations were computed to achieve a coefficient of variation less than

2%. The normalized coagulation rate constant, kV, ranged from 9.26 +/-

0.16 at TR =0 to 8.50 +/- 0.09 at TR= 720. Increasing the rotation rate
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Figure 4.8: The normalized coagulation rate constant as a function of the
rotation rate correlation time while keeping sr-Pn = 1.15. Error bars are +/-
one standard deviation from the mean.



185

correlation time decreased the calculated k° to about 92% of its maximum

value, in agreement with expectations.

Pair probability distributions for three simulation conditions and

analytical results for the small total strain limit (diffusion limit) are

compared in Figure 4.9. Computed pair probability profiles are shown for

(rsl-4, rRIq',) = (0.23, 0.72)(circles), (2.3, 7.2)(triangles) and

(0,, oo)(squares). For pure convection (large total strain), where the relative

velocity is proportional to the separation distance, P(r) is expected to decay

in proportion to 1/r3 . Similarly in the small total strain limit a 1/r3 decay is

expected since the turbulent diffusion coefficient is proportional to the

separation distance squared. Hence, it is not surprising that each

simulation condition shown in Figure 4.9 has the 1/r3 dependence in the

pair probability. The concentration distributions obtained at larger

correlation times have discontinuous drops to zero concentration at the

boundaries of the simulation domain. As the correlation times decrease

and the relative particle motion becomes more diffusive, the concentration

profile at the domain boundaries begins to decrease faster than 1/r3 . The

profile in the diffusion limit can be found as a solution to a pair probability

equation using the difflusivity given by Equation 3.19 to represent transport

due to turbulence. The pair probability in the small total strain limit has

the following form in the presence of the outer boundary:

P _ _8__r

C = r3-3 -- ) (4.34)2 ~r3 3 -8 )
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Figure 4.9: Radial concentration profiles calculated for (tsCy, "1.P1) =

(0.23, 0.72) (0), (2.3, 7.2) (A) and (00, cw) (0-). The solid line represents
the analytical prediction valid in the limit of small total strain.
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where the term in the parentheses corrects for the finite size of the

computational domain. Results for tsPn -. 0, TRP,,- 0 are shown as the

solid line in Figure 4.9. Effects of the finite outer boundary became

important at about r = 7 in the small total strain limit and are characterized

by a more rapid decrease in the concentration relative to the Pr3 decay.

This behavior is closely matched by the (usr', rRrl) = (0.23, 0.72)

simulations shown with the circles.

4.4 Turbulent coagulation for interacting particles

It is reasonable to expect that particle interactions such as

hydrodynamic interactions and van der Waals forces will affect the

turbulent coagulation rate. Hydrodynamic interactions are the result of

viscous drag on the colloidal particles and the lubrication forces that amass

in the gap between two colliding particles. Without a compensating

attractive interparticle force, hydrodynamic interactions prevent particle

collision. At small particle separations, attraction due to dispersion (i.e.,

van der Waals) forces can overcome the viscous resistance to collision and

lead to particle contact. The inclusion of these two forces into the

coagulation kernel provides the minimum requirements to predict

experimental results. In this section, alterations to the simulation

procedure are described - most notably, the simulations must be

performed by a less efficient forward integration in time. Then the effects

of varying the particle size, relative strength of van der Waals to

hydrodynamic forces and the total strain (rotation) are examined.
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4.4.1 Simulation method

In contrast to the situation without particle interactions, the particle

conservation equation is neither linear nor time reversible when

interactions are included. This means the efficient time-reversed

simulation method used in the non-interacting case (see Section 4.3.1) can

no longer be employed. Instead, the coagulation rate constant was

calculated from the trajectories of particles released at r = r_ that reached

the excluded volume surface of the test sphere. For large values of ro this

methodology became very inefficient as most particles created at the outer

simulation boundary left the simulation domain without interacting with the

test particle. The efficiency of the calculation was improved by decreasing

r-; however, this came at the expense of some degree of computational

accuracy as described in Section 4.3.1

In these simulations r_ = 5 was selected as a compromise between

the error resulting from using a small simulation domain and the

inefficiency of the forward time numerical computations for large

simulation domains. As discussed in Section 4.3.1, the finite value of r_

can affect the calculated value of k' in the diffusion limit. Using Equation

4.32, k° is expected to be overestimated by as much as 6% as the total

strain is decreased. Simulations of non-interacting particles conducted at

several values of -sI and "oR1-T1 were used to develop corrections for the

finite box size. Using simulations for non-interacting particles to assess the

effect of r_ was deemed to be reasonable because interactions were weak

at 5 < r_ < 10. For each total strain examined, several realizations at r_ = 5

and r_ = 10 were computed using the same random number seeds to
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minimize statistical fluctuations. Using r_, = 5 had less than a 2% effect,

with the impact decreasing with increasing total strain. This result suggests

that the smallest total strain examined in the simulations presented below

was larger than that required for the pair diffusion formulation to become

valid. Corrections on the order of 2% were not considered to be

statistically significant, so the simulation results obtained with r_ = 5 are

presented here without correction.

For the case of interacting particles, the computer program generated

a unique realization of the flow field and computed the relative trajectories

of the particles using the full equation of particle motion given by Equation

4.25. At each time step, a modified form of Equation 4.27 was used to

determine if a particle should be created at r = r_. Instead of evaluating

Equation 4.27 using the hydrodynamic conditions at r = o, the local flux

was evaluated at r = r- and (u-n)MAx z r<P1 12>1/2. This methodology for

particle creation assumed that at large separations the particles follow the

fluid motion, so the flux at the outer simulation boundary was accurately

represented by (u'n)C,. Indeed, at r = 5 the hydrodynamic interactions due

to a linear flow have only a 3.5% effect on the particle radial velocity while

van der Waals forces between a newly created particle and the test sphere

are negligible.

The simulation tracked the particles until they either collided with

the test sphere or left the simulation boundary. Statistics on the average

influx of particles through the excluded volume surface, Q, were collected

periodically until steady state was reached. The program then computed

the average coagulation rate for each flow field realization as before using
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the relation k = Q/Cj. The particle concentration at r = r., C1, was given

by Equation 4.31 evaluated at r_ rather than a.

Traversing the lubrication regime, where the gap thickness is small

compared to the particle radius and hydrodynamic forces are significant,

was expected to be the rate limiting step for coagulation; therefore, it was

essential that the simulations accurately resolved the motion at small

particle separations. The maximum local integration error of 1% set

previously also kept the simulation sufficiently accurate in the lubrication

region. When two particles were separated by small gap widths, the time

step was automatically refined by the error control algorithm to reflect the

large van-der-Waals- and hydrodynamic-induced particle fluxes.

Adding interparticle interactions led to another difficulty, namely: at

particle contact both the hydrodynamic interaction and the van der Waals

forces diverge. The singularities in the van der Waals and hydrodynanic

interactions were avoided by choosing a collision radius slightly larger than

the particle diameter, r = a + 0.Ol.. At this particle separation, the relative

particle velocity induced by the van der Waals attraction overwhelmed

effects of the flow resistence and the particles were assumed to colloid in

the next time step.

4.4.2 Simulation results

Along with the total strain and rotation, two additional parameters

govern the coagulation dynamics in systems with particle interactions,

namely: the shear number, Ns, describing the relative importance of

viscous and van der Waals forces, and NL. the ratio of the particle radius to

the London retardation wavelength (i.e., the length scale over which van
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der Waals attraction decays) (see Table 4.1). In this section the effects of

varying the shear number and particle size are considered for coagulation

in isotropic turbulence. The effect of varying the total strain and rotation

on the coagulation rate constant and the collision efficiency for a single

particle size and shear number are also evaluated.

Simulations in isotropic turbulence (-rsl-P = 2.3 andURIp T = 7.2) were

run for NL = 237, 474 and 4740 corresponding to 3.9, 7.6 and 76 gtm

diameter particles in a flow characterized by Ns ranging from 10' to 10'.

Results from these simulations, plotted as the collision efficiency, a, versus

Ns, are shown in Figure 4.10 along with error bars denoting +/- one

standard deviation. The results indicate that the effect of particle

interactions is significant. For the parameter range investigated, the

collision efficiency is smaller than about 50%, indicating that fewer than 1

out of 2 collisions that occur in the non-interacting case actually transpire

when particle interactions are included in the analysis. Increasing the

particle size adversely affects the collision efficiency because lubrication

forces are more significant for larger particles. For each particle size the

collision efficiency goes through a maximum at a critical Ns = Ns* that

depends on the particle size. Within the error, the data for all three particle

sizes collapses onto a single curve to the right of the maxima.

The maximum in the collision efficiency indicates that there is an

optimal combination of shear rate and particle size that results in the most

efficient coagulation. The interplay of mechanisms that leads to the

maximum in the collision efficiency for each particle size can be

understood by considering the relative velocity due to turbulent shear and
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Figure 4.10: The collision efficiency, a, as a function of the shear number,
Ns, for various particle sizes (NL). The symbols represent a = 1.9 gim (0),
3.8 gtm (0) and 38 gtm (A) and the error bars are +/- one standard
deviation. The power law fit was obtained by non-linear regression of the
data to the right of the maximums.
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the van der Waals force at separations where the van der Waals force

becomes significant. At this gap width van der Waals attractions have

sufficient magnitude to draw the particles together. Depending on the

particle size, the critical gap width scales with either the London

retardation length, or, if the particles are small enough, the length scale at

which lubrication forces break down. In the lubrication regime (i.e., ý << 1),

the velocity due to the fluid shear, V. is proportional to 1-Fao(1-A(r)) where

the lubrication resistance to motion, 1-A(r), is 4.077ý (Russel et al., 1989).

Furthermore, the relative particle velocity due to the van der Waals force

scales in proportion to VVDW- AHG(r)/12ttp• 2, where the lubrication

resistance to motion G(r) = 2ý (Russel et al., 1989). Balancing these two

velocities yields:

vs C 2 2 NS* (4.35)

VVDW

where ý* is the critical gap width at which van der Waals forces become

important and it is defined as the minimum of 4 rt/NL and 0.1. ý* = 4T/NL

corresponds to a gap width of X and ý* = 0.1 is meant to characterize the

gap width at which lubrication forces break down. Ns* in Equation 4.35 is

the critical shear number that gives the maximum collision efficiency, and

C is a constant found to be about 10 when balancing the turbulent shear

and van der Waals attraction. When C2 ý*2 Ns = 1, the turbulent shear is

just strong enough to bring the particles to the gap widths where van der

Waals forces dominate and collision is assured. For C2 ý*2 Ns > 1, particle

motion due to turbulence dominates van der Waals forces so particles are
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pushed toward smaller gap widths before van der Waals forces take over

and allow the particles to collide. Since lubrication resistence is higher for

relative movement due to shear, the collision efficiency decreases when the

shear dominates to smaller gap widths. When Ns > Ns* Figure 4.10 shows

that the collision efficiency is nearly independent of the particle size (i.e.,

independent of NL). This is because the point at which van der Waals

forces take over from the lubrication force and draws the particles together

is much smaller than the retardation length, so I and hence NL become

irrelevant. At the opposite extreme, when C2  2 Ns < 1 turbulent shear is

too weak to transport the particle to gap widths comparable to •. As a

result, van der Waals forces are unable to cause particle collision and the

collision efficiency declines.

The prediction for Ns* obtained from the force balance (Equation

4.35) is compared in Figure 4.11 with the simulation data. Here the critical

Ns = Ns* is plotted against NL, where NL is the ratio of the particle size to

the London wavelength (see Table 4.1). The critical shear number

dependence on NL is shown for the three particle sizes given in Figure 4.10

as well as for particle diameters of 12.5, 25, 40 and 159 gm. The solid

line with C = 40 is the prediction for Ns* valid when I characterizes the

distance at which van der Waals forces becomes important. As NL

decreases the particle radius rather than the London retardation length is

the appropriate scaling for the van der Waals force. Letting ý* = 0.1 and C

= 20 gives the dashed line. The critical shear number prediction given by

the solid line works well for the large particles (i.e., NL Ž 2000), but it



196

Large 2nnnn-
Particles2....

10000- Li

1000-

II

Small 100-
Particles 1 10 100 1O00

N !* Increased shear rate b--
Increased particle size --

Figure 4.11: The dependence of the particle size (NL) on the critical shear
number, Ns*, at which the collision efficiency goes through a maximum.
The line are scaling predictions assuming that flux due to the velocity
gradient field and that due to the van der Waals attraction are balanced at
the maximum collision efficiency. The solid line applies to large particles
where the characteristic length scale for the van der Waals attraction scales
with the London retardation length. The dashed line applies for small
particles where the particle radius provides the correct length scale for the
van der Waals attraction.
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underestimates Ns* for NL • 2000. For the two smallest particles (a = 3.9

and 7.8 gtm) simulated, Ns* seems to be independent of NL, in agreement

with the scaling that uses the particle radius as the characteristic length

scale for the van der Waals forces.

The scaling relation developed above to explain the maximum in the

collision efficiency curves is based upon the concept that the van der

Waals attraction force acts to draw particles together once the turbulence

has transported them to a critical separation distance. For shear numbers

above the critical value, the turbulence has sufficient strength to bring the

particle pair to separations smaller than X, beyond which point van der

Waals attractions inevitably cause a particle collision. It follows that the

collision efficiency could be estimated by calculating the particle flux

through the critical separation distance (ý = ý*) by using an estimate for the

pair probability based upon hydrodynamically interacting particles (without

van der Waals attraction). This analysis assumes that the pair probability

is unperturbed by the van der Waals attraction for gap widths larger than

the critical separation, so the effect of van der Waals attractions can be

ignored when estimating the pair probability. For Ns > Ns*, the gap width

at which the shear and van der Waals forces balance is less than the

London wavelength; therefore, consideration can be restricted to the non-

retarded van der Waals potential and the lubrication region. Batchelor &

Green (1972) derived the pair probability for particles influenced by

hydrodynamic interactions in a linear flow. In the lubrication regime

(• «1) they obtained:
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P(O) 0.234 C (4.36)•0.781 [In(1/g)]°.29

as before, C, 2 is the pair probability of singlet particles at large particle

separations. Although this result is applicable to linear flow fields with

open streamlines, it is used here to interpret the simulation results for the

unsteady turbulent flow.

An estimate for a may be obtained by taking the ratio of the particle

flux at ý" with hydrodynamic interactions to the particle flux in the absence

of particle interactions. The critical gap width, ý*, is given by the flux

balance used to calculate Equation 4.35. The result is ýc - Ns" 2 and, after

some manipulation, the following prediction for the collision efficiency

results:

0C = 0 O0 NsI0  (437)
[ln(Ns)] 29

where a• is an order one constant. The solid line in Figure 4.10 is the

collision efficiency predicted using Equation 4.37 where a° = 0.6. For the

simulation data to the right of the maximum, Ns > NL2/C2, Equation 4.37

fits the data with an r2 of 94%. By assuming the primary contribution to the

collision efficiency comes from the difference in the pair probability with

and without hydrodynamic interactions, Equation 4.37 is able to predict the

variation of a with the shear number.
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For subsequent comparison with other calculations, it is useful to

note that for Ns > 10 and Ns > Ns*, Equation 4.37 behaves like a power

law of the form:

(x = 0.52Ns0"1 (4.38)

Since the normalized coagulation kernel is k = cek°, this implies that the

coagulation rate constant increases with r0.84 for isotropic turbulence.

Comparing this estimate with values predicted for the asymptotic

limits of small and large total strain is worthwhile. Predictions derived for

non-Brownian particles in the small strain limit indicate that k - 1-O°89

(Chapter 3; Brunk et al., 1997a). Compared with the moderate total strain

result, coagulation is slightly less retarded by particle interactions in the

diffusion limit. As previously noted, the presence of hydrodynamic drift

that brings the particles close together increases the collision efficiencies in

the small strain limit (Chapter 3; Brunk et al., 1997a). To the authors'

knowledge the effects of particle-particle interactions have not been

computed for turbulent flows in the limit of large total strain.

Computations of collision efficiencies in steady linear flows,

however, are prevalent (Greene et al., 1994; van de Ven & Mason, 1977;

Zeichner and Schowalter, 1977; Adler, 1981). Recent trajectory

calculations computed for a number of steady linear flows have shown that

the stability factor for flows with more strain than vorticity is nearly

insensitive to flow type, except for flows similar to simple shear (Greene et

al., 1994). In the large total strain limit, the pseudo-stationary linear flow

field around a test particle can be conceptualized as an ensemble average
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over all possible linear flows; therefore, the collision efficiency in the large

strain limit is expected to correspond to the average collision efficiency for

all possible steady linear flows. Based upon Greene et al.'s conclusion

that collision efficiency is insensitive to flow type a's calculated for simple

shear and uniaxial extension are considered.

Zeichner & Schowalter (1977) calculate the stability factors for

uniaxial extension and simple shear for particles influenced by retarded van

der Waals attraction and hydrodynamic interactions. An examination of

their computations (Zeichner & Schowalter, 1977) reveals that k is

proportional to IP1°77 for simple shear (using the correction published in

Feke & Schowalter, 1983) and Pr,° 89 for uniaxial extension. In isotropic

turbulence (-u8sP = 2.3 and tRP, = 7.2), the dependence of k on the shear

rate is intermediate between the steady linear flow cases.

Based on the above analysis, variations of the coagulation rate

constant can be predicted as a function of the total strain when the shear

number and particle size are held constant. In the small total strain limit

the asymptotic approximation valid when the interparticle forces decay in

the lubrication regime gives the normalized coagulation rate constant, k z

0.25(tsPS,) 0°9Ns80" (Chapter 3; Brunk et al., 1997a). The estimate for

isotropic turbulence comes from combining kV = 8.62 and Equation 4.38 to

yield k = 5Ns"' 6 . At large total strain, kV = 9.96 and k ; 5.6Ns

where the collision efficiency preexponential factor given in Equation 4.38

was used to estimate the collision efficiency coefficient in the large total

strain limit. These power laws suggest that the simulated coagulation rate

should remain relatively constant or decrease slightly from moderate to
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large total strains. For small total strain the coagulation rate should

decrease because the coagulation rate constant depends on a positive

power of the total strain.

The effect of simultaneously varying "sr, and rRFl is shown in

Figure 4.12. The results are for 3.8 pim diameter polystyrene particles

(NL = 237) in turbulent flows with shear rates of 28 s-' (Ns = 1761) and

280 s- (Ns = 17610). The symbols represent the simulation data for r,

28 s-' (squares), and F. = 280 s' (circles). Comparing Figures 4.12 and

4.7 shows that at small total strain k has the same trend as V; an increase

in the normalized coagulation rate constant is seen with increasing total

strain up to rsr.4 - 1. Beyond t5sF.9 1 the normalized coagulation rate

constant goes through a minimum at rsFP - 5. Differences in coagulation

rate constant calculations at total strains of 1 and 5 are statistically

significant (z-test, p = 0.026 when Ns = 1761 and p = 0.003 when Ns =

17610). Within the statistical uncertainty of the data, the normalized rate

constant remains unchanged as the total strain increases above -TsF - 5;

however, the fact that both data sets show the normalized rate constant

increasing again for total strains above 5 does lend some credence to the

trend.

The relative drop in the coagulation rate constant when going from

t5P s of 1 to 5 can be used to estimate the Kolmogorov shear rate power

law expected in the large total strain limit. In the absence of interparticle

interactions, the normalized rate constants differ slightly (compare kV =

8.62 for isotropic turbulence and k° = 9.96 in the large total strain and large

total rotation limit). Assuming the pre-exponential factors for interacting
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Figure 4.12: The coagulation rate constant against the total strain for 1.9
gim radius particles and Ns = 1761 ([3) and Ns = 17610 (0). Symbols
represent the simulation data and the error bars are +/- one standard
deviation from the mean. Results are for a fixed ratio of total rotation to
total strain equal to 3.13.
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particles at moderate and large total strain are similar, the two data sets in

Figure 4.12 suggest that k - 1P,1°78 at large total strain. This dependence on

the shear rate is more closely aligned to the prediction for simple shear

(Feke & Schowalter, 1983) than with uniaxial extension (Feke &

Schowalter, 1983).

The apparent correspondence between the large total strain limit and

the simple shear rates might have been expected. In both simple shear and

turbulence, the shear rate partitions equally between rotational and

extension components. The importance of rotation has been demonstrated

to decrease the coagulation rate in both the random flow discussed in this

chapter and steady linear flows (Greene et al., 1994).

The collision efficiency, a = k/k°, calculated from the data presented

in Figure 4.12 is shown in Figure 4.13. a varies between 16 and 30% for

the r-, = 28 s' computations (squares) and between 10 and 30% for the r.,

= 280 s- simulations. In both cases, the small total strain calculations

show the largest collision efficiencies. In the small total strain limit the

collision efficiency varies as ax z (TsrP)-°'1 Ns°11, which increases as the

total strain decreases. The reason coagulation at small total strain is more

efficient may be explained by considering the relative motion of two

particles in the large and small total strain limits. Neglecting the influence

of closed stream lines, at large total strain interacting particles have

essentially one opportunity to interact and collide before the persistent flow

field sweeps them away from each other. In the diffusive limit, particle

trajectories are random and a pair of particles will have multiple encounters

before they separate. Thus each particle pair is given several chances to
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and the ratio of total rotation to total strain is held fixed at 3.13.
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collide in the small strain limit and that increases the probability that the

two particles will have a successful collision.

4.5 Conclusion

The objectives of this study were threefold: 1) to develop a

simulation method, valid at arbitrary total strain and rotation, that could be

used to compute the trajectories of coagulating particles with radii smaller

than the Kolmogorov length of turbulence; 2) to compare the coagulation

rate constant for non-interacting particles at arbitrary total strain to the

asymptotic limits of large and small strain derived previously (Saffinan &

Turner, 1956; Chapter 3; Brunk et al., 1997a); and 3) to compute the effect

of particle interactions on coagulation in isotropic turbulence.

The relative motion of a particle pair was simulated by solving an

equation of motion valid for particles with diameters smaller than the

Kolmogorov length scale. The velocity field was assumed to be a

randomly varying, locally linear flow field. The velocity gradient was

expanded as a temporal Fourier series with components constrained to

reproduce the two-time Lagrangian statistics of the fluctuating turbulent

velocity gradient tensor. Resulting simulations for the non-interacting

particles indicate that both large and small total strain asymptotes

overestimate the actual coagulation rate. A hyperbolic interpolation of the

asymptotic limits reproduces the numerical calculation to within 5% of the

actual values; thus, by knowing the asymptotic forms in the diffusion

(Chapter 3; Brunk et al., 1997a) and pseudo-stationary limits, the behavior

in the intermediate regime can be estimated over the range of strain rate
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correlation times. Saffman & Turner (1956) provide an estimate for the

coagulation rate valid for irrotational flows in the large total strain limit;

however, their result over predicts the turbulent coagulation simulations in

this limit by about 5%. Rotation is shown here to decrease the observed

coagulation rate at large total strain and the absence of rotation in the

Saffman & Turner model explains the discrepancy with these computer

simulations.

The presence of rotation is thought to lead to recirculating

streamlines in the flow. Since coagulation is limited to open streamlines

that can bring particles from the bulk, the presence of curved stream lines

that leave and return to the excluded volume surface decreases the

coagulation rate. Additional investigations into the separate effects of the

strain and rotation rate correlation times show that the coagulation rate

decreases as the rotation rate correlation time increases. This decrease

results from persistent recirculating streamlines that form in the system at

large total rotation. At small Fr IR, rotation does not effect the coagulation

rate because there is some probability that as the velocity field evolves, a

particle on a stream line that returns to the excluded volume surface of the

test sphere can escape its trajectory before returning to r = a.

The consideration of hydrodynamic interactions and retarded van der

Waals attractions leads to significant decreases in the computed

coagulation rate constant. For instance, a 4 pm diameter particle

experiencing F, = 10 sl has a collision efficiency, a, of about 20%. In

other words, only one collision between interacting particles occurs for

every five that occur in the absence of interparticle interactions. For a
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given particle size an optimal shear rate that leads to a maximum

coagulation efficiency exists. At the maximum collision efficiency, the

turbulent shear is just strong enough to bring the particle pair to gap widths

at which van der Waals forces can take over and cause a collision. For

larger shear rates, the turbulence drives the particles to small gap widths

before the van der Waals attraction is sufficient to cause a collision. Since

lubrication forces increase with decreasing gap width, the large shear rates

experience a larger resistence to collision and the transport efficiency of

the turbulence declines. For weak turbulence, the shear is not strong

enough to transport particles to gap widths where van der Waals forces are

significant and therefore the collision efficiency is lower. A simple balance

based on the turbulent particle flux and the flux due to the van der Waals

attractive forces predicts the location of the maximum collision efficiency.

Simulations performed at a constant shear number (i.e., ratio of

viscous to van der Waals forces) and various values of the total strain show

that order one total strains have the highest coagulation rate. Two

competing effects lead to this result: the transport rate of the flow field and

the probability that two interacting particles will collide before the flow

field transports them away from each other. The rate of transport toward

the test sphere increases with total strain as the transport mechanism

changes from diffusive transport at small total strain to transport in a

pseudo-steady flow field at large total strain. The higher rates of transport

found at large total strains increase the coagulation rate constant because

more particles are available for coagulation. Working against this process

is the efficiency of the particle encounters. In simplest terms, at large total
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strain, approaching particles have essentially one opportunity for successful

collision before the persistent flow field carries them away from each

other. In contrast, in the diffusive limit of small total strain, particle

positions fluctuate randomly so that approaching particles will undergo

many close encounters before they either collide or are transported away

from each other. The many opportunities for collision available in the

diffusion limit increases the probability that the particles will actually

collide, so the efficiency of the process is higher than at large total strain.

The synergistic combination of relatively efficient particle transport and

multiple particle encounters that occurs for total strains of order one

explains why flows with moderate total strain have the highest coagulation

rate.

The simulations conducted in this research are an important step in

improving the understanding of colloidal aggregation in turbulence.

Coagulation rates have been computed for experimentally realizable

particle sizes, shear rates and Hamnaker constants. What remains is to

obtain accurate experimental measurements of turbulent coagulation to

verify the model predictions. In Chapter 6, turbulent coagulation rates are

measured for monodisperse particles under conditions of isotropic

turbulence created by an oscillating grid reactor and the results are

compared to the simulations (Chapter 6; Brunk et al., 1997b). The

apparatus used for these experiments is described and characterized in

Chapter 5.
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CHAPTER 5:

MODELING NATURAL HYDRODYNAMIC SYSTEMS WITH A

DIFFERENTIAL-TURBULENCE COLUMN*

5.1 Introduction

Pollutant fate and transport in aquatic environments depend on

complex physical, biological, and chemical mechanisms. Water quality

management activities, including assessment of the impact of spills,

remediation of contaminated sediment areas and location of sensitive

facilities require understanding of not only the overall hydrodynamic

circulation and transport patterns, but also the local details of

turbulence/sediment/pollutant interactions within the water column.

Current understanding of these systems is limited, and the development of

environmentally sound practices and processes would benefit from a more

precise understanding of the fate of pollutants discharged into water

environments (NRC, 1989). For complete understanding of the

interactions between hydrodynamic and physical/chemical processes within

aquatic environments, careful study in a laboratory setting is a necessity.

To this end, a new apparatus, termed a differential turbulence column

*Reprinted with permission from BRUNK, B. K., WEBER-SHIRK, M.,

JENSEN, A., JIRKA, G. H. & LION, L. W. 1996 Modeling natural

hydrodynamic systems with a differential turbulence column. J. Hydr.

Eng. 122(7), 373-380. Copyright 1996 ASCE.
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(DTC), has been built to provide a controlled laboratory environment for

the study of natural hydrodynamic systems. Oscillating grids are used in

the DTC to replicate turbulence levels typical of aquatic systems. An

acoustic Doppler velocimeter (ADV, Sontek Inc.) coupled with a

computer-driven positioning system provides characterization of the spatial

distribution of turbulence and, in situ sampling and vertically spaced

sample ports provide mechanisms for introducing chemical species and

monitoring chemical dynamics.

The recently developed apparatus has several advantages over

conventional flume-type hydrodynamic simulators for studying

simultaneous chemical and hydrodynamic interactions. The DTC's self-

contained structure allows detailed accounting of any chemical species

introduced into the system. More importantly, the apparatus is ideal for

studies of chemical processes over long time spans that are difficult to

carry out in flume-type systems where time relates to distance. For

instance, consider the case of particle trapping in a stratified estuary where

the particle may undergo several processes including turbulent diffusion,

transport across the density interface, coagulation and settling. Through

dimensional analysis and scaling arguments, relative time scales can be

assigned to each mechanism. Order of magnitude analysis suggests that

particle flocculation and transport through the stratified layer will be rate

limiting processes and will occur on time scales of several minutes. On the

other hand, turbulent transport of momentum and mass are expected to

occur on the order of seconds. Therefore, laboratory studies of

physical/chemical reactions and transport processes under stratified
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estuarine conditions may require resolution of time scales ranging from

seconds to hours so that competing reactions can be observed. Simulating

such a system in a conventional open channel flume would require an

unacceptably long channel.

This chapter highlights the design of the DTC as well as the results

of initial turbulence and sediment loading tests that characterize the

hydrodynamics of the reactor. Turbulence in the DTC is quantified by

comparing it to established grid-stirred turbulence scaling laws. Open

channel flow turbulence and sediment loading are simulated in the DTC

and compared with established behavior.

The particle transport time scaling described above (see also

Chapter 1) suggests that turbulent transport of mass and momentum will

appear steady on time scales appropriate for analyzing rate limiting

processes like coagulation and transport across the salinity interface.

Verification that the DTC can reproduce steady state turbulence intensity

and sediment loading profiles is, therefore, an important first step in

simulating the chemical and hydrodynamic behavior of more complex

environmental systems.

5.2 The Differential Turbulence Column

The DTC (see Figure 5.1) is a 20 cm x 40 cm x 100 cm reactor

designed to simulate a vertical section of a natural water column by

reproducing hydrodynamic and chemical conditions typical of estuarine

and riverine enviromnents. The apparatus was designed to meet several

criteria, including: 1) generation of vertical profiles in salinity and
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turbulence, 2) provision for high resolution in situ sampling so that the

details of pollutant and particle transport could be observed, 3) a closed

system to simplify mass balances on chemical and physical species, and 4)

automation for studies of long duration.

The schematic diagram shown in Figure 5.2 emphasizes the salient

features of the DTC. Stainless steel comprises the back and base of the

apparatus, while glass is used for the front, left and right sides to permit

viewing of the system. The grid design used in the apparatus was modeled

after the recommendations of other investigators who have used grid-

stirred devices (Hopfinger & Toly, 1976; Thompson & Turner, 1975; De

Silva & Fernando, 1992). Five horizontally oscillating grids, 40 cm wide

by 20 cm high with a solidity of 37.6%, were equally spaced vertically

along the back of the column. Each stainless steel grid is constructed of

2.67 mm rod woven into a square mesh with 1.27 cm center-to-center

spacing. Linear bearings connected between the drive shafts and the grids

allow movement in the horizontal direction only. The grid connecting rods

are attached to drive wheels through ball joints. The radial location of the

ball joint on the drive wheel can be adjusted to obtain grid strokes ranging

from 10 to 40 mm in 5 mnm increments. Each drive wheel is connected to

an individually controlled electric gear motor capable of operating over a

range from I to 8.5 Hz.

A baffled inlet/outlet allows the system to be filled with any

combination of fresh and salt water to mimic the salinity profiles common

to estuarine systems. Twenty sampling tubes at 5 cm intervals enter the

DTC from the vertical centerline of the rear stainless steel panel. The



218

3-D View

Five independently
controlled turbulence

.... .. m generating grids.

Sample ports every

5cm down vertical
axis.

40cm 
20cm

Figure 5.2: Schematic of the DTC



219

Figure 5.2 (Continued)

Side View turbulence

ADV generating grid computer data2-axis ' , acquisition

positioning 
a

system\
s m----Sample collector

S~Variable speed

SJmotorStiffer

S~water

S~reservoir

baffled inline pump
fill/drain port filter



220

sampling locations can be manually adjusted from front to back of the DTC

(x = 0 to x = 20 cm; see Figure 5.2 for the coordinate system used in this

analysis.). The sample tubes are connected to a manual sampling device

that uses gravity flow to sample from all ports simultaneously. Material

collected from the vertically spaced sample ports is stored in particle free

vials for subsequent analysis by a particle counter (Coulter Multisizer II,

Coulter Corp.).

A computer controlled 2-axis positioning system allows in situ

measurement within the water column and can accommodate multiple local

sensing and sampling devices. Currently, a miniature acoustic Doppler

velocimeter (ADV, Sontek, Inc.) and a micro-conductivity probe are

mounted to measure velocity and salinity fluctuations, respectively. A

sample tube attached to the positioning system also pennits withdrawal of

water samples at the location of the ADV and conductivity probes. The

positioning system and sampling probes are interfaced to a computer. Data

acquisition and analysis software allows the computer to collect and

analyze data from the DTC experiments.

5.3 ADV Theory and Limitations

The ADV uses pulse-to-pulse coherent Doppler technology to

provide 3-component velocity infonnation at a rate of 25 Hz (Lohrnan et

al., 1994). The ADV emits 10 MHz sonic pulses that reflect off ambient

particles within the liquid. By comparing phase shifts between subsequent

pulses the instrument can provide velocity infonnation for a cylindrical

control volume 3 mm in radius by 3 to 9 mm high. The control volume is
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located about 5 cm below the transmit/receive transducers to minimize the

effect of the probe on the velocity measurements (Lohrman et al., 1994).

Because the ADV analyzes the echoes returning from sonic bursts,

interference due to echo from the apparatus walls, termed pulse-to-pulse

interference, can result in inaccurate results (Lohrman, 1994). Pulse-to-

pulse interference is characterized by a sharp increase in signal noise

levels. Such interference was observed at only one location in the reactor

and data collected at the interference position were not considered in

subsequent analysis.

5.4 One Point Turbulence Statistics

One point statistics were obtained for homogeneous conditions with

all grids operating at 4, 6, and 8 Hz. After several minutes of equilibration,

the ADV sampled at several locations in the DTC for 10 minutes each.

Both the Eulerian time spectra of the turbulent kinetic energy (TKE) and

the integral time scale were computed at each sample location.

The Eulerian time spectra of the TKE when all grids operated at 6

Hz is shown in Figure 5.3. The spectra was smoothed by passing the raw

velocity fluctuation data through a 5-point running average filter and

averaging over all sampling locations within the DTC. The graph shows

the expected 5/3 slope (Tennekes & Lumley, 1976) for the inertial range of

turbulence. In addition, Figure 5.3 shows an energy spike at 6 Hz

corresponding to the grid frequency. Limitations on ADV sampling rate

prevented resolution of the spectra down to Kolmogorov scales.
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Both the autocorrelation function of the instantaneous velocity

signals as well as a running average with variable averaging window were

calculated on the velocity data stream to deduce the appropriate sampling

time as a function of turbulence intensity. To obtain good turbulence

statistics, sampling time must exceed the integral time scale by several

multiples.

The velocity autocorrelation coefficient was determined by sampling

with the ADV probe at a single location for 10 minutes while all the grids

were operated at 4, 6, or 8 Hz. The integral of the velocity autocorrelation

coefficient yields the integral time scale for the turbulence.

The running average calculation with variable averaging window

size, also termed the detrended root mean square (rms) velocity average,

was found by computing the rmns velocity using different time intervals of

instantaneous velocity data. The detrended rms velocity average showed

an asymptotic approach to a steady value as the averaging window became

large enough to sample all the time scales of the turbulence field.

Figure 5.4 shows an example of a velocity autocorrelation

coefficient and detrended rms velocity signal when all grids were operated

at 6 Hz with a stroke of 4 cm. The autocorrelation coefficient suggests an

integral time scale of less than 6 seconds (Figure 5.4a), while the running

average calculation with variable window size indicates that the rms

velocity reaches an asymptote when velocity records of 20 seconds or

longer are averaged. In all cases, the running average calculation produced

larger estimates for the integral time scale. As a conservative estimate, all
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Figure 5.4: Two methods to determine the integral time scale for
turbulence: (a) velocity autocorrelation coefficient; (b) effect of averaging
time on the observed nns velocity.
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subsequent experiments used the correlation times predicted by the

detrended rms velocity calculation (Figure 5.4b) as a lower limit on the

sampling time of the ADV. Similar analyses were performed in the reactor

for grid frequencies of 2 and 4 Hz. These experiments indicated that

appropriate sampling times were 40 and 20 seconds for 2 and 4 Hz,

respectively.

5.5 Characterizing Grid Turbulence

Grid-stirred turbulence has often been used in situations where a

well-defined homogeneous, isotropic turbulent field is required (e.g.,

Thompson & Turner, 1975; Hopfinger & Toly, 1976). Hopfinger & Toly

(1976) were some of the first researchers to investigate the behavior of

grid-stirred turbulence and provide scaling laws predicting the turbulent

velocity and length scales associated with this turbulence generating

mechanism. For the rns velocity parallel to grid motion, they proposed:

Ut Sll/2M I/2
-Cht (5.1)

fs x

where u' is the rms velocity in the direction parallel to grid motion, f is the

grid frequency, S is the stroke, M is the mesh size, x is the perpendicular

distance from the grid and C1 t is an order one constant estimated to be

about 0.25. The scaling suggested by this relation has subsequently been

verified in many grid systems (e.g., Brumley & Jirka, 1987; De Silva &

Fernando, 1992). Equation 5.1 implies that grid stirred turbulence will be
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homogeneous in planes perpendicular to the grid motion, but that it decays

with distance from the grid.

Experiments were performed in the DTC under homogeneous

conditions, with all grids operating identically, to verify the Hopfinger &

Toly scaling relation as well as to assess the degree of isotropy of the

system. End effects and other gross heterogeneities in a plane parallel to

the middle grid were checked through detailed mapping of the turbulent

kinetic energy (TKE). In this experiment the DTC operated with all grids

oscillating at 6 Hz and 4 cm stroke. The ADV was configured to sample

with multiple sweeps across the middle grid at a distance of 11 cm from

the grid stroke center. Each horizontal sweep from y = -15 to 15 cm lasted

1,000 seconds and was 1 cm below the previous sweep. Figure 5.5 shows

a contour plot of the TKE variation across the middle grid. Dark areas

indicate regions of low TKE while lighter regions contained high TKE.

Measured TKE varied from 0.72 to 2.97 cl 2/s2 with an average TKE of

1.67 cm2/s2 and a standard deviation of 0.38 cm2/s2 . Both the absence of

long term structure and the relatively narrow variance relative to the

average TKE suggest that the apparatus produces homogeneous

turbulence.

Experiments performed over the f, S, and x parameter space,

summarized in Table 5.1, were nmn to verify that the rms velocities

measured by the ADV were consistent with the scaling proposed in

Equation 5.1. All grids in the reactor operated with identical strokes and

frequencies and the ADV measured the velocity at several locations within

the reactor. The spatial homogeneity in the system as demonstrated by the
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Table 5.1: DTC experimental parameters used in grid turbulence scaling
relation verification.

Distance from grid Grid stroke Grid frequency

(cm) (cm) (Hz)

11 2 2,4,6,8

11 4 2,3,4,6,8

16 4 2,4,5,6
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TKE map permitted the rms velocity data collected throughout the DTC

water column to be averaged together.

To simplify the analysis the Hopfmger & Toly relation, Equation

5.1, was converted to a scaling relation for the TKE. Assuming isotropy,

so that u' = v' = w', where v' and w' are the y and z velocity components

respectively, the TKE can be expressed as:

TKE = 3u/2 = 3c2f2S
3M

2 2 L x2 (5.2)

Although this facilitates data analysis by combining the 3-dimensional

velocity data, error analysis indicates that the TKE will have twice the

coefficient of variation as the rms data.

The measured TKE plotted against the right-hand side of Equation

5.2 is summarized in Figure 5.6. Each data point was obtained by

sampling the reactor at several locations for times longer than the

correlation time and then spatially averaging the velocity traces. The error

bars in Figure 5.6 denote two standard deviations. The absolute error

increases with increasing measured TKE; however, the coefficient of

variation (the TKE standard deviation divided by the mean value) varied

between 16 and 34% except for one point at 56% and it did not show a

trend with increasing measured TKE. This suggests that the larger

standard deviation at higher measured TKE values results from the

presence of larger TKE fluctuations which naturally occur in the more

turbulent conditions. A line with zero intercept fit the data with an r2 of

92%. The slope of the linear regression predicted that Cht = 0.26 with 95%
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confidence intervals of ±0.01; therefore, the turbulence fields generated

within the DTC agree very well with the scaling behavior predicted by

Hopfinger & Toly (1976).

5.6 Simulation of Open Channel Flow Turbulence

Simulation of open channel flow rms velocity in the DTC illustrates

the capability of the apparatus to replicate the hydrodynamics of natural

aquatic environments. In open channel flow, turbulence generated by shear

instabilities created at the channel bottom propagate up through the water

column. After examining a large body of experimental measurements,

Nezu & Nakagawa (1993) showed that an empirical exponential decay law

represents the distribution of turbulent intensity as a function of height.

They suggest that u' can be represented by:

- Co,rexp ) (5.3)U* h53

where U* is the bottom friction velocity, h is the height of the water

column and CoCf is an order one constant determined to be about 2.3.

Analogous expressions can be written for V and w' as a function of height.

Again, to simplify the analysis, isotropy was assumed and Nezu &

Nakagawa's expressions (1993) for the rms velocities were converted to a

relation for the vertical TKE distribution:

TKE - Co 2exp 2 ) (5.4)
TKE * ~ h
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where TKE* is the turbulent kinetic energy associated with the bottom

friction velocity:

TKE* = 3 U*2 (5.5)
2

Combining Equation 5.3 with the Hopfmger & Toly scaling relation,

Equation 5.1, yielded an expression that was used to set up the oscillating

grids so that the apparatus mimicked open channel flow turbulence:

fS /2 C ocfUx
- Cht U1x exp(-z/h) (5.6)

Cht M v 1/2

The height, z, used for each grid was chosen to be at the grid center. Once

the grid stroke and frequency of the bottom grid were selected, the

frequencies and strokes of the other grids could be calculated by taking the

ratio of Equation 5.6 for any grid with Equation 5.6 for the bottom grid:

(S312)bottomgr = exp 1o-z (5.7)

(fS 3/Sbto gi

If the grid stroke is kept constant for all grids, then Equation 5.7 states that

the grid frequencies for the four higher grids from bottom to top are 82, 67,

55 and 45%, respectively, of the bottom grid frequency.

Open channel flow TKE was simulated in the DTC with the grids

operating at a stroke of 4 cm and bottom grid frequency varying from 2.5

to 8.0 Hz. Velocity data were collected at several vertical positions by

sampling with the ADV along horizontal transects. Assuming horizontal
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homogeneity, the data obtained during each horizontal sweep were

combined to obtain a horizontally averaged TKE. The experimental TKE

nonnalized by the TKE at the bottom of the DTC water column is plotted

in Figure 5.7 as a function of distance from the bottom. The empirical

prediction of Equation 5.4 based on Nezu & Nakagawa's (1993)

observations is plotted as the solid line on the graph. Although there is

experimental scatter, the data follow the expected exponential trend. Much

of the variance in the experimental data can be explained by the data

reduction method. Error analysis indicates that converting rms velocity

data to TKE effectively doubles the experimental error. In any regard,

non-linear regression of the data with Equation 5.5 results in an r' of 67%

and supports the conclusion that the experimental data follows the

predicted exponential decay.

5.7 Simulating Sediment Loading in Homogeneous Turbulence

At steady state in a system with horizontal homogeneity, suspended

sediment transport can be characterized by a balance between upward

sediment transport due to turbulent diffusion and downward sediment

transport due to settling:

-d_ 0 (5.8)
C dz

where C is the mean particle concentration, (a is the terminal settling

velocity of the individual sediment particles and E, is the turbulent diffusion

coefficient. Equation 5.8 assumes that the system can be characterized by

a single length scale so that the mixing length model for turbulent diffusion
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can be employed (Tennekes & Lumley, 1972). For two-dimensional

uniform turbulent flow Es is constant and Equation 5.8 integrates to yield

(Vanoni, 1975):

C - exp[---- (z-a)] (5.9)
Ca ES

where Ca is the concentration at the reference height, a.

The DTC does not seem to uphold the assumption of horizontal

homogeneity because it produces grid-generated homogeneous turbulence

in vertical YZ planes, but not in horizontal planes. The scaling deduced by

Hopfinger & Toly indicates that the turbulence intensity decays with the

distance from the oscillating grid while the integral turbulent length scale

increases in proportion to distance from the grid (Hopfinger & Toly,

1976). Assmning a simple mixing length model, turbulent diffusion (the

product of the integral velocity and length scale) is invariant with distance

from the grid. This cancellation of distance dependence means the

apparatus should produce horizontally homogeneous turbulent diffusion.

Several homogeneous experiments were run using a mixture of glass

microbeads (Cataphote, Inc.), with diameters ranging from 13 to 60 grm

and a density of 2.45 g/cm3. To facilitate sediment resuspension off the

column floor, the bottom grid was replaced with an L-shaped grid. The L-

shaped grid increased the sediment loading of the column by increasing

fluid shear at the bottom of the DTC. Velocity profile measurements

indicated that the L-shaped grid affected the lower 20 cm of the DTC. In

this region, sediment concentration was highly variable and therefore was
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not considered in the reported experimental results. Sediment

concentration as a function of height was obtained by pumping the fluid

through a tube that was connected to the positioning system. Before each

sample was collected, the tubing was purged to remove fluid held over

from previous samples. The positioning system was set to move

horizontally from y = -15 to + 15 cm and sediment sampling occurred

during this horizontal sweep to obtain an average sediment concentration

for each depth. The particle size distribution of each sediment sample was

measured four times over a particle diameter range of 10 to 64 jim using

the Coulter Multisizer II. After combining the replicates into a single data

set, the concentrations of particles within ±1 gim of 15, 20, 25, 30, 40 and

45 gm diameter were extracted from the size distribution data. The

physical properties for each size range were determined by assuming that

all the particles had a diameter in the middle of the size range. Typical

experimental results are shown in Figure 5.8 where the particle

concentration of 40 pim glass beads normalized by the bottom

concentration (Ca) is graphed as a function of height when all grids

operated at 6 Hz and 4 cm stroke. The model line was obtained by a non-

linear regression fit of the data to Equation 5.9. Multivariate regression

was used to compute the experimental diffusion coefficient and the

reference concentration. The settling velocity was calculated from the

Stokes settling velocity equation. According to the mixing length model

(Tennekes & Lumley, 1972),

1,/
SCtbul (5.10)
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where SCturb is the turbulent Schmidt number, u' is the root mean square

(rms) velocity, and 1 is a characteristic mixing length in the DTC. The

turbulent Schmidt number compares turbulent momentum and mass

transport. The Reynolds analogy suggests that turbulence should transport

momentum and mass similarly; yet it has been demonstrated that mass

transport of suspended sediments under turbulent conditions can be

considerably different from turbulent momentum transport (Jobson &

Sayer, 1970; Vanoni, 1975). The success of the Reynolds analogy would

depend on whether the particles follow the fluid motion. Deviations from

the Reynolds analogy would be anticipated when w »> u' and the particle

relaxation time exceeds the time scale of the turbulence (i.e., d2p/18i,

where d is the particle diameter, p is the particle density and g is the fluid

viscosity). Discrepancies tend to increase with sediment concentration and

size. For the glass microspheres used in this research u'/cO > 3 and the

ratio of turbulent time scale to particle relaxation time exceeded 10'

indicating that the particles should follow the fluid motion.

Experimentally Jobson & Sayer (1970) determined Scturb to be 0.98 for

123 pm glass beads, indicating that the Reynolds analogy holds relatively

well. The glass microspheres used in the current work are less than 123

gm in diameter and thus deviations from the Reynolds analogy can be

expected to be even smaller. Given the errors associated with

measurement, it seems acceptable to assume an SCturb ofunity.

In Figure 5.9 the regressed turbulent mass diffusion coefficient was

plotted against u' as obtained from Equation 5.1. If the mixing length

model applies, E, should increase linearly with u' and the resulting slope
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will be the mixing length of the DTC. The best fit line shown in Figure 5.9

had a slope of 8.9 cm with an r2 of 71%.

The integral length scale obtained from the mixing length model can

be compared to other integral length scale approximations. The product of

the integral velocity (Equation 5.1) and time scales yields an estimate for

the integral length scale of about 10 cm. Additionally, based on scaling

arguments, the integral length scale for turbulence is usually estimated to

be on the order of the smallest dimension of the flow reactor which is 20

cm for the DTC. The regressed large scale eddy size of 8.9 cm compares

remarkably well with these other order of magnitude estimates.

5.8 Simulating Sediment Loading in Open Channel Flow

In open channel flow, turbulence intensity decays with distance

from the bottom of the channel; therefore, turbulent mass transport

depends on vertical position and the sediment loading as a function of

depth is no longer a simple exponential function as was found in Equation

5.9. To obtain an expression for the turbulent mass diffusivity in open

channel flow, the Reynolds analogy was again invoked:

E = 1SCturb m (5.11)

where Em is the turbulent diffusion coefficient for momentum exchange.

Assuming that the Prandtl-von Kd-mnn velocity defect law applies to the

open channel flow system, Rouse (1937) showed that the turbulent

momentum diffusivity, E,,,, is governed by:
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EC = KU z(5.12)

where K is the von Karnnmn universal constant. By substituting Equation

5.12 into the sediment flux balance, Equation 5.8, Rouse (1937) derived an

expression for the sediment loading in open channel flow:

C _ -
C (h a R(5.13)Ca z h-a

where R is the Rouse parameter. The Rouse number is a non-dimensional

parameter describing the ratio of particle transport by settling to particle

transport by turbulence:

(R)
1 KU* (5.14)

SCturb

The DTC was set up to simulate sediment loading under open

channel flow turbulence conditions. Experiments were run with the

bottom grid frequency at 4, 6 and 8 Hz, a mixture of glass microspheres

ranging in diameter from 13 to 60 gm were added to the system, and the

suspended sediment concentration was allowed to reach steady state.

Samples were removed from the water column as a function of depth using

the sampling technique described earlier. Each sample was analyzed with

the Coulter Multisizer II and particle concentrations for several particle

size ranges were obtained. Typical experimental concentration profiles for
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Rouse numbers of 0.34 and 0.10, along with theoretical predictions, are

shown in Figure 5.10. In this analysis, w was obtained from the Stokes

settling velocity equation. Again, recognizing that the concentrations and

sediment sizes used in this experiment were small, the effect of sediment

on turbulent transport was neglected (Vanoni, 1975; Jobson & Sayre,

1970) and the clear water value of 0.4 was chosen for Y,. The bottom

shear velocity, U*, was found from the grid scaling relation (Equation 5.1)

using the stroke, frequency and mesh size of the bottom grid and assuming

a measurement distance 10 cm from the center of the grid oscillations.

Additional experiments were completed at theoretical Rouse

numbers ranging from 0.02 to 0.7. The experimental concentration

profiles were fit to Equation 5.13 using non-linear regression with the

Rouse number as the fitting parameter. Figure 5.11 compares the

theoretical prediction for the Rouse number with that obtained via

experiment. In general, the data fall along the 450 line supporting the

conclusion that the DTC is capable of mimicking sediment loading in open

channel flow systems.

5.9 Summary and Conclusions

Dimensional analysis indicates that there is a range of time scales

associated with pollutant and particle transport in natural hydrological

systems. For instance, turbulent transport is expected to occur in seconds

while coagulation and particle settling require many minutes. Ultimately,

to understand how pollutants and particles are transported in natural

environments, the evolution of rate limiting processes must be examined in
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carefully designed laboratory simulations. In this context, short time scale

processes such as turbulent transport can be considered to be at steady

state and it is important to characterize this steady state behavior. The

tests described in this chapter are an important step in the laboratory

simulation of pollutant and particle transport because they indicate that the

DTC apparatus can replicate the desired steady state concentration and

turbulent distributions.

The DTC offers excellent capabilities for simultaneous control of

solution chemistry, mass transport and turbulence. It includes a 20 cm x

40 cm x 100 cm deep water column, five vertically spaced grids that

generate variable turbulence as a finction of depth and 20 vertically

spaced sample ports spaced at 5 cm intervals. A computer controlled 2-

axis positioning system currently is mounted with a miniature ADV

capable of providing 3-component velocity fluctuations at 25 Hz.

Experiments were run to probe the DTC's ability to simulate homogeneous

and open channel flow type turbulence and to replicate sediment loading

typical for these flow conditions.

Grid generated turbulence has been previously used in laboratory

situations where a well-defined turbulence field is required. Experiments

undertaken to examine the DTC's ability to produce well-defined

turbulence showed that the apparatus exhibits a good degree of isotropy

and it obeys the scaling relation first proposed by Hopfinger & Toly

(1976).

As a next step, the turbulence profiles associated with open channel

flow were simulated in the DTC. Experiments performed with the bottom
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grid frequency varying from 2.5 to 8.0 Hz indicate that the DTC can

replicate the exponential decay associated with turbulence in open channel

flow. Sediment loading profiles for homogeneous and open channel flow

turbulence were simulated using glass microbeads of various sizes.

Concentration profiles measured for various particle sizes indicate that the

expected exponential profile for sediment loading under homogeneous

turbulence can be accurately replicated in the DTC. Additionally, the

analysis suggested that the turbulent momentum diffusivity observed in the

apparatus is of the same order as that predicted from the mixing length

model.

Sediment loading, when the DTC mimicked open channel flow

turbulence, was observed to follow the power law proposed by Rouse

(1937). The experimentally detennined Rouse parameter that compares

the importance of particle settling to turbulent sediment transport was

found to agree well with the value obtained from theoretical prediction.

The experiments reported herein demonstrate the DTC's success in

simulating turbulence and sedimentation as they occur in fluvial hydraulic

systems.
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CHAPTER 6:

OBSERVATIONS OF COAGULATION IN ISOTROPIC

TURBULENCE*

6.1 Introduction

Turbulence-induced coagulation is an important process leading to

the aggregation of colloidal particles in both industrial and environmental

processes (McCave, 1984). Turbulent mixing is heavily employed in the

water treatment and chemical industries to enhance the aggregation and

removal of fine particles (Appiah & O'Melia, 1990). In natural aquatic

systems, pollutants tend to associate strongly with particles and hence

considerable effort has been focused on understanding the dynamics of

particles in natural environments (O'Melia, 1980). In estuaries, for

instance, contaminated suspended particles in river water mix with sea

water resulting in colloidal destabilization, aggregation, particle settling,

and the accumulation of contaminated sediments onto the estuarine benthos

(Stumm & Morgan, 1981).

Despite the importance of turbulent coagulation, the fundamental

understanding of the processes leading to coagulation in turbulence is

limited. Over the past 40 years a variety of turbulent coagulation models

have been proposed (Saffman & Turner, 1956; Chapter 3 and 4; Brunk et

*Submitted to J. FluidMech. as BRUNK, B. K., KOCH, D. L. & LION,

L. W. 1997 Observations of coagulation in isotropic turbulence.
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al., 1997a&b; Delichatsios & Probstein, 1975; Camp & Stein, 1943;

Casson & Lawler, 1990); yet, without well-controlled experiments that

satisfy the assumptions of the various models, choosing between the

theoretical paradigms is problematic. Surprisingly, only a few

experimental studies have been undertaken that attempt to meet the

hypotheses made in the model calculations. For experimental coagulation

rate measurements to be compared reliably with theoretical predictions, the

experimental system must generate well defined, nearly isotropic

turbulence; the initial particles (singlets) must be monodisperse; only the

initial rate of flocculation should be considered so that particle breakup and

the formation of higher order aggregates are negligible; and the system

should be dilute so binary collisions dominate the coagulation process

(Chapter 3; Brunk et al., 1997a). As indicated below few, if any, of the

existing experimental studies meet these assumptions.

In the environmental engineering literature, jar tests are often used to

obtain a qualitative understanding of how the coagulation rate is affected

by stirring rate or turbulence intensity (Sturmn & Morgan, 1981).

Delichatsios and Probstein (1975) have correctly noted that the

experimental conditions for jar tests are far from ideal because the highly

inhomogeneous turbulence created in these systems violates key

assumptions of existing turbulence models. As an alternative, Delichatsios

and Probstein studied turbulent coagulation in pipe flow (1975). Because

turbulence in pipe flow is well understood, it was hoped that these

experiments could be used to distinguish between alternate model

formulations for the coagulation rate constant. Pipe flow experiments have
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two main disadvantages: 1) measurement time is limited by the length of

pipe used and 2) large velocity gradients caused by mean flows can

significantly affect the reported coagulation rate (Clark, 1985).

Results from the experiments of Delichatsios and Probstein (1975)

agreed with their empirical coagulation model. The model, however, was

derived by analogy with the kinetic theory of gas, it did not consider the

effects of particle-particle interactions such as van der Waals attraction,

and it ignored spatial and temporal distributions of the turbulence intensity.

Instead, the work used an empirical estimate for the Kolmogorov shear rate

in the turbulent core of the pipe. As is demonstrated in this chapter (see

Section 6.5), both the spatial distribution of turbulence and interparticle

interactions can have a considerable influence on the interpretation of the

experimental data. Hydrodynamic interactions between particles decrease

the coagulation rate significantly because of viscous resistance to particle

collision. Moreover, in the presence of particle interactions, the

coagulation rate is a nonlinear function of the turbulent shear rate (Chapter

4; Brunk et al., 1997b) and so it is inappropriate to use an average shear

rate to characterize the turbulent coagulation rate. Rather, it is important to

know the detailed spatial distribution of the turbulent shear rate to compute

the observed rate of coagulation.

Use of an oscillating grid is another option for generating well-

characterized turbulence (Hopfinger & Toly, 1976; Brumley & Jirka,

1987). Casson & Lawler (1991) reported on coagulation experiments

conducted in a grid-stirred apparatus; however, they did not account for

turbulence intensity decay with distance from the operating grids. In
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addition, these investigators used colloidal particles that had a broad

particle size distribution, and they reported flocculation rates over long

times during which aggregates larger than doublets formed. At long times

and for broad particle size distributions, coagulation between multi-particle

aggregates can be significant, and the measured coagulation rate does not

pertain to the singlet aggregation reaction. Moreover, most coagulation

models treat particle aggregates as if they were spherical particles with a

volume equal to the total volume of the singlet particles in the floc. These

models cannot be expected to be quantitative at large times since the

coalescence formulation inaccurately represents the shape of the

aggregates (Elimelech et al., 1995).

In this work, the turbulent shear coagulation rate was measured for

monodisperse polystyrene latex particles in turbulence generated by a grid-

stirred apparatus. In Section 6.2 below the kinetic theory of coagulation is

briefly summarized and dimensional analysis is used to derive the form of

the coagulation rate constant. Pertinent results from the computer

simulation of turbulent coagulation presented in Chapter 4 (Brunk et al.,

1997b) are also reviewed briefly in Section 6.2. Section 6.3 describes the

general experimental procedures and data analysis techniques used in the

coagulation experiments reported in this chapter. Measurements were

made of the initial coagulation rate of monodisperse polystyrene latex

particles by monitoring the disappearance of singlet particles and

correcting the data for particle break up. A necessary input for the

computer simulation is the Hamaker constant which characterizes the

magnitude of the van der Waals attractive potential between the
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coagulating particles. Brownian coagulation experiments described in

Section 6.4 were used to estimate the Hamaker constant. The turbulent

coagulation experiments were conducted in the locally homogeneous,

isotropic turbulence created by an oscillating grid. Turbulence intensities

in grid-generated turbulence decay with distance from the grid. Because

bulk mixing is fast compared with coagulation, the coagulating particles

will experience a spatially varying turbulence field over the course of an

experiment. For quantitative comparison between the computer

simulations and the experiments, knowledge of the spatial distribution of

turbulence within the reactor is necessary. Determination of the turbulence

intensity distribution within the grid-stirred reactor is described in Section

6.5.2 and related through scaling arguments to the spatial distribution of the

Kolmogorov shear rate. Coagulation rates of destabilized particles are

presented in Section 6.5.3 as a function of the average Kolmogorov shear

rate in the reactor. The measured coagulation rates are compared with

results obtained from the dynamical simulations of coagulating particles

that are smaller than the scales of turbulence (Section 6.5.4).

6.2 Review of turbulent coagulation theory

6.2.1 Kinetic rate expression for turbulence

This investigation is restricted to the initial rate of doublet formation

in a dilute suspension of monodisperse singlet particles. Consequently, the

loss of singlets in the system is due only to the formation of doublets and

the kinetic rate expression is second order in the singlet concentration:
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1 d = _kS 2  (6.1)
2dt

where S is the number concentration of singlet particles and k is the

coagulation rate constant. The rate constant incorporates both the transport

mechanisms leading to coagulation (e.g., turbulent shear, Brownian motion

and differential settling) and the effect of interparticle interactions (e.g.,

van der Waals attraction and hydrodynamics). Generally, the coagulation

rate constant is decomposed into the product of an ideal rate constant, k°,

that includes the effect of non-interacting particle transport, and a collision

efficiency, ca, that incorporates hydrodynamic interactions (i.e., viscous

drag and lubrication forces) and chemical interactions (i.e., van der Waals

attraction and electrostatic double layer repulsion). The collision efficiency

is defined as the ratio of the coagulation rate obtained when particle

interactions are considered to the ideal coagulation rate without particle

interactions. Generally, the collision efficiency is less than 1 indicating

that only a fraction of the collisions occurring for non-interacting particles

actually transpire when particle interactions are included in the analysis.

Theoretical and empirical expressions for k' are available (see Pearson et

al., 1984 for a table of ideal rate constants for a variety of particle transport

mechanisms); however the collision efficiency must usually be obtained

through numerical integration or dynamic simulations of coagulation.

In turbulence, colloidal particles are typically orders of magnitude

smaller than the length scales of turbulence. Since the rate of strain

increases with decreasing turbulence length scale (Tennekes & Lumley,
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1972), the small scales of turbulence (the Kolmogorov scales) dominate the

relative motion of neighboring particles and thus the rate of aggregation.

The magnitude of the Kolmogorov scales can be estimated from scaling

arguments that balance the turbulent energy flux with the characteristic

viscous dissipation. The results are the Kolmogorov scales of length, ii,

and velocity gradient, P:

() 1/4

T= (6.2)

F = ((6.3)

where E is the turbulent dissipation rate and v is the kinematic viscosity

used to parameterize the effects of viscosity. Direct numerical simulations

(DNS) indicate that the turbulent velocity gradient experienced by a fluid

particle is controlled by two correlation time scales: ts and TR for the strain

and rotational components of the flow, respectively (Girimaji & Pope,

1990). Non-linear regression of strain and rotation rate correlation

functions taken from DNS (Girimaji & Pope, 1990) indicates that TsP

2.3 and TR-' z 7.2 (Chapter 4; Brunk et al., 1997b).

Dimensional analysis can be used to ascertain the functional form of

the turbulent shear coagulation rate constant. Since any directional

information imposed at large scales of turbulence will be lost during the

energy cascade process, isotropy and homogeneity are assumed at the

small scales of turbulence and therefore the only length scale affecting the
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coagulation rate constant of monodisperse particles will be their radius, a.

For sufficiently large separation of the colloidal and turbulence length

scales, a ( TI, the flow field in the neighborhood of two coagulating

particles may be assumed to be approximately linear and can be

characterized by the velocity gradient. If particle inertia can be safely

neglected then the flow field provides the only time scales in the scaling

analysis. Representing the fluctuating velocity gradient with its magnitude

and correlation time yields the expectation that kT = f (r,-rt, sR, a) or, after

combining into non-dimensional groups:

kT = aTP((-CS, RcF])Fa3 (6.4)

where the subscript T denotes that this is the turbulent shear coagulation

rate constant, a is the radius of a singlet particle, caT is the collision

efficiency that accounts for the effect of interparticle interactions. The

function 1(s r, R r-F) accounts for the kinematics of the flow field and it is

made explicit in several turbulent coagulation models (Saffinan & Turner,

1956, Chapters 3 and 4; Brunk et al., 1997a&b, Delichatsios & Probstein,

1975, Camp & Stein, 1943). For large total strain and rotation, particle

coagulation occurs in a pseudo-steady flow field and P becomes

independent of the flow time scales. In the limit of small total strain,

particle transport is diffusive leading to a P3 that is proportional to the total

strain (see Chapter 3; Brunk et al., 1997a).

6.2.2 Review of turbulent coagulation dynamical simulations

In Chapter 4 (Brunk et al., 1997b), computer simulations of

interacting particles in Gaussian isotropic turbulence are used to estimate
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the turbulent coagulation rate constant in the presence and absence of

hydrodynamic interactions and van der Waals attractions. Below, salient

results are summarized for comparison with experimental measurements of

turbulent coagulation.

Analytical predictions for turbulent-shear-induced coagulation have

been derived for the large and small total strain limits. The total strain can

be conceptualized as a measure of the total amplitude of the temporally

varying flow and it is defined as the product of the characteristic strain rate

and its correlation time (i.e., Fts). The well-known turbulent coagulation

model derived by Saffinan & Turner (1956) applies in the large total strain

limit where the velocity field is persistent, while the author has investigated

coagulation in the small strain limit (Chapter 3; Brunk et al., 1997a), where

the rapidly fluctuating velocity field causes diffusive transport. DNS

investigations of Lagrangian statistics in isotropic turbulence have

indicated that the total strain is order one (Pope, 1990; Girimaji & Pope,

1990) bringing into question the applicability of both previously derived

asymptotic limits to turbulent coagulation.

In the numerical simulations, trajectory calculations of turbulent

coagulation at arbitrary total strain were used to predict the actual

coagulation rate and to compare with the large and small total strain

asymptotic limits (Chapter 3; Brunk et al., 1997b). For particles smaller

than the length scales of turbulence, the relative motion of particles was

represented as a temporally varying linear flow field. The fluctuating

velocity gradient was assumed to be isotropic and Gaussian with two-time

Lagrangian statistics taken from DNS (Girimaji & Pope, 1990).
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Coagulation rates were obtained in the presence and absence of

hydrodynamic interactions and van der Waals attractions. The reader is

referred to Chapter 4 (see also Brunk et al., 1997b) for complete details on

the simulation procedure and an interpretation of the results.

In the absence of particle-particle interactions the turbulent

coagulation rate constant depends on the total strain and total rotation in

the system. A best-fit to the simulation data suggests that:

3_ 32 _ " (6.5)' I
- 5 1 +0.65-T(TsF) (6.5)

Simulations based on the correlation times T"sIF1 = 2.3 and "cRI'n = 7.2,

obtained from DNS calculations in isotropic turbulence (see Chapter 4;

Brunk et al., 1997b), indicate that [3 = 8.62 +/- 0.02, so that:

kT = 8.62aTIPa 3  (6.6)

The collision efficiency, cT, has been calculated for non-Brownian

particles experiencing hydrodynamic interactions and retarded van der

Waals attraction. When van der Waals attractions and hydrodynamic

interactions are included, two additional non-dimensional parameters

govern the behavior of the system. NL = 4 rta/kL is the ratio of the particle

size to the London retardation wavelength, XL. The retardation wavelength

characterizes the distance at which van der Waals attractions are reduced

because of the finite propagation speed of electromagnetic radiation

between atoms on neighboring particles (Russel et al., 1989). The shear

number, Ns = 12nga 3F/AH, describes the relative importance of the viscous
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and van der Waals forces. Here, p is the fluid viscosity and AH is the

Hamaker constant.

Coagulation rates in isotropic turbulence were computed in Chapter

4 for several values of NL and Ns. When NL > 10, the collision efficiencies

simulated for the 3.9 gm diamneter particles used in the experiments

described in this Chapter, could be represented (r2 = 97%) with the

following power law:

aT = 0.56N-0 "16  (6.7)

This result implies that, in the presence of particle interactions, the

coagulation rate constant increases in proportion to J1-0_84.

6.3 Coagulation experiments

Below, experimental protocols used to measure the singlet

concentration evolution in a coagulating suspension are described.

Subsequently, the data analysis technique used to extract the coagulation

rate constant from the rate of singlet particle depletion is presented.

6.3.1 Experimental procedure

Monodisperse sulfate polystyrene latex particles (Interfacial

Dynamics Corp., OR) having a density of 1.055 g/cm 3 were used as the

coagulating particles for the experiments. Using a Coulter Multisizer II

(Coulter Corp., FL), the number averaged particle diameter was measured

to be 3.9 +/- 0.3 pm indicating that the microspheres were nearly

monodisperse. The particles were stored at 4VC in distilled water before

use. During coagulation experiments, a density-matched saline solution,
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created by adding 75.6 g/L NaC1 to distilled water, was used to suspend

the latex particles and to eliminate the effects of settling, particle inertia,

and double layer repulsion between particles.

Coagulated samples were stored for analysis in a density-matched,

glucose-based storage solution made by adding 6.5 g/L NaCl, 2.5g/L NaN3

and 137 g/L glucose to distilled water. The glucose was added to increase

the solution density to within 1% of the bead density, NaCl was used as a

background electrolyte and NaN3 was used to inhibit bacterial growth in

the storage solution. All storage solutions were pre-filtered through 0.4 gnm

membrane filters to remove background particulates.

Density matching was important because it prevented particles from

settling out of suspension during and after an experiment and it reduced

gravity- and turbulent-acceleration-induced coagulation of different size

particles. The density difference between the particles and the solution was

always less than 0.01 g/cm3 . For this maximum density difference the

calculated particle settling velocity was insignificant compared to the

turbulent integral scale velocities measured in the experiments. Similarly,

using estimates from Saffinan & Turner (1956), coagulation due to

turbulent acceleration was predicted to be unimportant compared to

turbulent shear for the experimental conditions reported in this manuscript

(see Section 6.5). The coagulation rate constant for differential settling of

a singlet and a doublet particle was at least 5 times smaller than the

turbulent shear and Brownian coagulation rate constants when coagulation

kernels summarized by Pearson et. al. (1984) were used. Since the rate of

differential settling coagulation depends on the concentration of doublets in
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the system, it was inconsequential as long as the experiments contained

few doublets. Therefore, using density-matched solutions and analyzing

only data for which there were excess singlets assured that turbulent shear

controlled the observed particle motion and coagulation.

During an experiment, aliquots of coagulating suspension were

periodically withdrawn and diluted in particle-free plastic vials containing

the density matched glucose-based storage solution. The particle size

distributions of the diluted samples were measured within 1 hour.

Preliminary experiments showed that coagulated particles could be stored

longer than 6 hours without significant alteration of the observed particle

size distribution and concentration. Samples were measured using the

Coulter Multisizer with a 100 [tm aperture. The instrument measures

changes in conductivity that occur as particles are transported through the

aperture. The magnitude and duration of the conductivity spikes are

related to the volume of the particle passing through the aperture. Particle

volumes are converted into particle diameters assuming spherical particles.

There are three significant analytical concerns associated with the

Coulter Multisizer. First, the concentration of particles in the suspension

must be low enough so that the probability of measuring two particles

simultaneously, termed the coincidence, is small. By diluting samples to

contain about 10,000 particles/mnl, coincidence was kept to less than 2% of

the sample population. Second, the statistical uncertainty in the

concentration caused by counting a finite number of particles was reduced

by measuring at least of 20,000 particles for each sample. Finally, since

the maximum shear rates at the aperture are large (The shear rate at the
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wall is greater than 10' s-' for the apertures used in this analysis.) control

experiments were required to ensure doublet breakup near the aperture

opening did not skew the measurements (Gibbs, 1982). To test for the

effects of doublet breakage, coagulation experiments were analyzed using

30, 100 and 140 gm diameter apertures. The particle concentrations

measured with the three apertures agreed to within 10% indicating that

each aperture was sampling the particle suspension similarly despite the

10-fold variation in the wall shear rate over the 30 to 140 lm aperture size

range. It is possible that doublets actually broke up near the aperture, but

did not separate sufficiently to be counted as separate particles by the

device. This experimental evaluation indicates that aggregate breakup in

the Coulter Multisizer II did not influence the measured doublet

concentration.

Figure 6.1 shows an example of the raw output from the Coulter

Multisizer at the beginning (dashed line) and end (solid line) of a

coagulation experiment. The emergence of a distinct doublet peak

indicates that flocculation was occurring and could be accurately measured

with the instrument.

Calculation of the initial coagulation rate constant from the

experimental particle size distribution data depends on knowing the ratio of

the singlet concentration to its initial value rather than the absolute singlet

concentration (see discussion below). The number concentration in the

diameter interval from 3.0 to 3.9 gm (designated with the vertical dotted

lines on Figure 6.1) was used as a measure of the singlet concentration. By

choosing this size interval, the error caused by counting unusually small
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Figure 6.1: Typical particle size distributions obtained at the beginning
(dashed line) and end (solid line) of a coagulation experiment. The final
results show the fornation of a significant doublet peak compared to the
initial particle size distribution, indicating coagulation of the singlet
particles. Dotted lines bracket the region of particle size distribution used
as a measure of the singlet concentration.
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doublet particles (created by the aggregation of two smaller than average

singlet particles) as singlets was significantly reduced. Since some singlets

were outside the selected size range the number concentration in the 3.0 to

3.9 ptm interval was normalized by its value at the beginning of a

coagulation experiment. The error introduced by truncating the size

interval used to determine singlet concentration canceled out in

calculations of the relative concentration; therefore, relative concentration

was deemed to be more accurate than the singlet concentration.

6.3.2 Coagulation rate constant determination

If the concentration of singlet particles is in excess, Equation 6.1 can

be rewritten as a pseudo-first order expression depending on the particle

volume fraction:

dS = k'S (6.8)
dr

where k' = (3dp/2na 3)k and 49 is the volume fraction of particles. The use

of the pseudo-first order approximation requires S/(S 0-S) >> 1, where So is

the initial concentration of singlet particles. The linearized expression

given by Equation 6.8 has the advantage of leading to an integral rate

expression that depends on the relative concentration of singlet particles

(see Equation 6.9). As noted above, the relative concentration of singlets

was estimated from the experimental data rather than the absolute singlet

concentration since the relative concentration could be determined more

accurately.
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In a closed system, the particle volume fraction is a constant and

Equation 6.8 can be integrated subject to the initial condition that when t =

0, S = SO.

I{AJS=-k't (6.9)

A plot of ln(S/S0) against time should yield a straight line with the slope

being proportional to the rate constant, k'.

Since the above rate expression is predicated on doublet formation

being the only coagulation process occurring, data collection must stop

once the formation of larger order aggregates becomes significant.

Aggregates made by the collision of a doublet and a singlet (i.e., a triplet)

are most likely to fonn next. A simple estimate for the importance of

triplet formation can be obtained by taking the ratio of the doublet to triplet

coagulation rates. Denoting doublet concentration with D and triplet

concentration with T, this ratio is given by:

dD/dt _ k o S'2

dT/dt 03 kOSD (6.10)

where the numerical subscripts indicate the number of primary particles in

the aggregate. If a and k' are not strong functions of aggregate size,

Equation 6.10 reduces to:

dD/dt 2S

dTdt (6.11)
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where a particle balance was used to relate D to S, assuming the

concentration of higher order aggregates is negligible, i.e., D = ½2(S0-S).

To within an order one constant, this is the same criterion that was

established for using the pseudo-first order approximation in Equation 6.8.

Aggregate breakup can also alter the rate of singlet depletion.

Breakup is characterized by.a decrease in the observed coagulation rate

until the system reaches steady state. In other words, at steady state the

formation of doublets is balanced by breakup of doublets and the effective

coagulation rate becomes equal to zero. In the following investigations

aggregate break up was significant at the higher turbulent shear rates.

Doublet breakup was modeled explicitly by including a term in the rate

equation for the singlet concentration dependent on the doublet

concentration. Thus, Equation 6.8 becomes:
dS = -k/S + 2bD (6.12)

dt

where b is the unknown doublet break up rate constant that is conjectured

to depend on the turbulence intensity (McCave, 1984). After substituting

D = %(So - S) for the doublet concentration, Equation 6.12 can be

integrated to obtain:

Sk b+k /exp[-(b+k)t]
- / (6.13)

So b +kT
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In cases where doublet breakup was experimentally observed, non-linear

regression of the experimental data using Equation 6.13 was used to

estimate the coagulation rate constant and the break up rate constant. For

the data at the highest turbulent shear rate, the transition to equilibrium was

very sharp, so use of the explicit breakup model was unnecessary. Instead,

the linear regime (see Equation 6.9) dominated by doublet formation was

isolated statistically by monitoring the coefficient of determination (r2) of a

linear regression as additional data at longer times was included in the

regression. Inclusion of data at times when the model given by Equation

6.9 was valid improved the coefficient of determination while inclusion of

data that deviated because of significant break up decreased the value of r2.

The rate constant obtained at the maximum r1 was used to approximate k

for the highest shear case.

6.4 Estimation of the Hamaker constant

The Hamaker constant (AH) provides a measure of the strength of

the van der Waals attraction between colloidal particles. It was necessary

to estimate its value for the 3.9 gtm diameter polystyrene beads used in

these experiments before the turbulent coagulation experiment and

simulation results could be compared. Previous experimental estimates for

AH obtained from Brownian coagulation experiments range from 0.7kbT to

1.9kbT for polystyrene particles (Russel et al., 1989), where kb is the

Boltzmann constant and T is the absolute temperature. Most of the

variation in the estimated Hamaker constants is attributed to the weak
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dependence of the Brownian collision efficiency on the Hamaker constant

(Russel et al., 1989).

The Hamaker constant was obtained by fitting theoretical predictions

for the Brownian coagulation rate constant to experimental data. Besides

providing an estimate for AH, agreement of the experimentally determined

value of AH with previous estimates furnishes evidence that the extents of

coagulation measured with the Coulter Multisizer are reasonable.

6.4.1 Data analysis and procedure

The initial rate of Brownian coagulation is second order in the

singlet concentration and its kinetic expression is given by Equation 6.1,

where k = kB = MB8 kbT/3 g is the Brownian diffusion coagulation kernel

(Russel et al., 1989) and aB is the Brownian coagulation collision

efficiency incorporating the effects particle interactions.

The Brownian coagulation collision efficiency has been computed

for particles influenced by hydrodynamic interactions, van der Waals

attraction and electrostatic double layer repulsion (Spielman, 1970;

Valioulis & List, 1984). Spielman (1970) considered Brownian

coagulation for particles influenced by a non-retarded van der Waals

potential, while Valioulis & List (1984) extended the calculations to

include the effects of van der Waals retardation. Unfortunately, numerical

results were only provided for particles smaller than 1 gim diameter.

The equation for aB can be derived from the steady state radial pair

diffusion equation valid for a particle influenced by Brownian motion,

hydrodynamic interactions and an interparticle potential. In agreement
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with others (Russel et al., 1989; Spielman, 1970; Valioulis & List, 1984)

the following result was obtained for equal sized particles:

1 =:2 exp(Q/kbT) ds
S f2 G(r) S2  (6.14)

where (D is the interparticle potential, s = r/a is the particle separation

distance scaled by the particle radius and G(r) is the radial relative mobility

for two hydrodynamically interacting Brownian particles (Batchelor, 1976).

The solution of Equation 6.14 was obtained using a 5th order Runge-Kutta

algorithm with adaptive step control (Press et al., 1992). The van der

Waals potential reported by Schenkel & Kitchener (1960) was used for (D

and values of G(r) were taken from Kim & Karilla (1991). Additional

details on the integration method and the form of D may be found in

Chapter 3 (see also Brunk et al., 1997a). In Figure 6.2 the solid line shows

the model prediction for the Brownian coagulation collision efficiency

versus AH/kT.

Brownian coagulation experiments were conducted in the density-

matched saline solution. Double layer interactions were assumed to be

negligible due to the high ionic strength of the suspending medium, so only

hydrodynamic interactions and van der Waals forces affected the

experimentally determined Brownian coagulation rate.

The coagulation rate was calculated by the methods outlined in

Section 6.3. In the Brownian coagulation experiments doublet breakup was

not important so the integral rate expression given by Equation 6.9 was

used in the data analysis. Experiments were conducted in particle-free
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Figure 6.2: Model predictions for the Brownian coagulation collision
efficiency against the Hamaker constant for 3.9 gm diameter monodisperse
polystyrene spherical particles. The square represents the experimentally
determined ot for the 3.9 gm latex particles used in this manuscript. Error
bars are 60% confidence intervals.
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plastic vials containing approximately 22 ml of solution. A reaction half-

life of about 90 minutes was chosen for the experiments which meant that

the initial bead concentration in the vials had to be about 9.5x10 6

particles/ml. Initially, each vial was filled with 2 ml of filtered distilled

deionized water. Enough beads were added so that when diluted to 22 ml

the vial would contain the correct number concentration of singlets. The 2

ml suspension of beads was placed in a sonicating bath for three minutes to

break up any doublets. Then, 20 ml of saline solution was quickly poured

into the vial to mix the beads and "start" Brownian coagulation. Fluid

motions caused by pouring were allowed to subside. After waiting 5

minutes, samples of the suspension were taken every 5 minutes over 45

minutes. At each sampling time, 52 pl were removed and diluted 1:400 in

previously tared vials containing density-matched glucose solution. Sample

dilution quenched the Brownian coagulation reaction and provided the

correct concentration levels for accurate analysis in the Coulter Multisizer.

Samples were taken using an Eppendorf automatic pipette with the plastic

pipette tip enlarged to 1-2 mm diameter. The larger diameter pipette tip

was used to minimize particle breakup due to shear caused by sampling

(Gibbs, 1982).

6.4.2 Brownian coagulation experimental results

For each Brownian coagulation experiment a mass balance was

computed as a finction of elapsed time. Examination of the volumetric

concentration evolution data showed that the system was well mixed and

temporal trends caused by particle losses/gains were not apparent.
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The evolution of the singlet concentration for a representative

experiment is shown in Figure 6.3 along with a best fit line through the data

using Equation 6.9. For this experiment, kB = 4.72 +/- 0.28 gm3/s with an

r2 of 94%. Error bars are 95% confidence intervals based on Poisson

statistics.

The average Brownian coagulation rate constant was obtained from 5

independent experiments and the average rate was normalized by the

Brownian coagulation rate without interparticle interactions to yield a[b =

43.7% with 60% confidence intervals of +/- 1.5%. Using this collision

efficiency with Figure 6.2 yields an average AH/kbT = 0.75 shown as the

open square on the graph. The collision efficiency is insensitive to the

value of the Hamaker constant; thus, the 60% confidence interval of AH is

wide (0.5kT to 1.3kT). The best estimate for AH/kbT, however, compares

favorably to estimates summarized in Russel et al. (1989).

6.5 Turbulent coagulation experimental results

Experimental measurements of the turbulent coagulation rate are

presented below and compared with the computer simulations of turbulent

coagulation. Experiments were conducted in the spatially decaying,

isotropic turbulence created by an oscillating grid device. First, the

technique for measuring the Kolmogorov shear rate in the reactor is

presented. Measurements of the turbulent coagulation rate are then

correlated with the spatially averaged Kolmogorov shear rate. Finally, the

coagulation rate as a function of average Kolmogorov shear rate in the

reactor is compared with the turbulent coagulation model summarized
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Figure 6.3: Linearized singlet concentration evolution data obtained in a
Brownian coagulation experiment. The solid line is a best fit through the
experimental data and the error bars are 95% confidence intervals based on
Poisson statistics.
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above (see Section 6.2). The comparison between simulation and

experiment also illustrates the importance of correctly relating the model

predictions to the local turbulent conditions of the reactor. Comparison is

also made between the computer simulations and the turbulent pipe flow

coagulation experiments conducted by Delichatsios & Probstein (1975).

6.5.1 Turbulent coagulation materials and methods

Experiments were conducted in an oscillating grid reactor system

that was originally designed to simulate the vertical distribution of

turbulence typical for natural aquatic systems. The reactor has been shown

to produce well-defined homogeneous, isotropic turbulence that follows

established grid-stirred turbulence scaling laws (Chapter 5; Brunk et al.,

1996) and it has been used in stratified flow (Jensen, 1997) and sediment

transport studies (Chapter 5; Brunk et al., 1996).

The 100 x 40 x 20 cm reactor contains five vertically spaced,

independently oscillating, 20 x 40 cm turbulence generating grids. Each

stainless steel grid is woven from 2.67 mm rods to form a grid with a mesh

spacing of 1.27 cm and a solidity of 37.6%. The center of the grid stroke is

located 4 cm from the back of the reactor. Each grid can be independently

operated at frequencies ranging from 0 to 8 Hz with a grid stroke (twice the

oscillation amplitude) of 0.5 to 4 cm in 0.5 cm increments. Sample ports

spaced in 5 cm intervals down the center of the column can be moved to

any horizontal distance into the reactor providing gravity-fed in situ

sampling of the water column.

The intensity of the turbulence created in the reactor can be varied by

changing the oscillating frequency and the stroke length of each grid. An
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acoustic Doppler velocimeter (ADV) was used to measure three

components of the turbulent velocity. The velocimeter samples a

cylindrical volume 3 mm in radius and 3-9 mm high at a rate of 25 Hz. The

sample volume location is 5 cm below the signal transducers to minimize

the effect of the probe on the acquired velocity data (Lohrman et al., 1994).

Additional details about the construction and operation of the grid-stirred

reactor may be found in Chapter 5 (see also Brunk et al., 1996).

For this work, experiments were conducted with a single oscillating

grid in the bottom 1/5th of the reactor to minimize the number of

polystyrene beads used in a single experiment. A diagram of the reactor

system is shown in Figure 6.4. The control volume consisted of a glass and

stainless steel chamber 20 cm wide, 40 cm deep and 25 cm high. The tank

was filled with pre-filtered density-matched saline solution through the

baffled fill/drain port. For each experiment the reactor contained

approximately 20 L of a particle suspension. Samples taken from the

reactor before addition of the polystyrene beads indicated that particle

contamination was indistinguishable from background noise. After filling

with the filtered saline solution, the oscillating grid was set at the desired

frequency and the reactor was allowed to reach hydrodynamic steady state.

Using Equation 6.4 in Equation 6.9 and published estimates for f3

and OC (P3 10.4, OT = 1; Saffinan & Turner, 1956), the particle

concentration needed to obtain a coagulation half-life of 40 minutes was

computed. For this calculation, the characteristic Kolmogorov shear rate

was approximated using the methods outlined below in Section 6.5.2. For

each turbulent coagulation experiment, the required number of beads was
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Figure 6.4: Diagram of the bottom of the grid-stirred apparatus used for the
turbulent coagulation experiments. The schematic shows the location of
sampling ports (5 cm and 16 cm from the back wall of the apparatus) and
the dimensions of the coagulation experiment control volume. The center
of the grid stroke is located 4 cm from the back of the reactor.



278

diluted in 100 ml of filtered distilled water and sonicated for several

minutes. Afterwards the stock solution was distributed rapidly and equally

over the water surface. The system was allowed to mix for 30 seconds

before sampling began. Samples were taken from the two ports shown in

Figure 6.4, placed 2.5 cm from the bottom and 5 cm from the back of the

reactor and 12.5 cm from the bottom and 16 cm from the back of the

reactor. Aliquots of approximately 1 ml were taken from the reactor

periodically and placed in previously tared, particle-free vials containing the

density-matched glucose solution. The coagulating suspension was diluted

by approximately a factor of 20 in the sample vial to quench the coagulation

reaction and lower the particle number concentration to a range suitable for

analysis on the Coulter Multisizer.

6.5.2 Characterization of oscillating grid turbulence

Turbulence generated in an oscillating grid system decays rapidly

with distance from the grid (Hopfinger & Toly, 1976); thus, coagulating

particles will experience a spatially varying distribution of Kolmogorov

shear rate as they migrate throughout the reactor. If the system is well-

mixed, aggregating particles will sample the entire reactor space during

coagulation; therefore, it would be reasonable to expect the observed

coagulation rate measured at a single point to be related to the spatial

distribution of shear rates (and hence the distribution of local coagulation

rates) within the reactor.

In this section, estimates for the Kolmogorov shear rate are provided

as a function of the oscillating grid frequency and distance from the grid.

The local estimates for r are subsequently used to relate the experimental
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coagulation rate constant to the volumetrically-averaged shear rate in the

reactor.

The assumption that the reactor is well mixed can be evaluated by

comparing the characteristic time for coagulation to the reactor mixing time.

An estimate for the characteristic coagulation time is to = 1/k'. A

conservative estimate for the reactor mixing time is given by the turbulent

diffusion time scale, ti = I-I/u'L where H is the reactor height (25 cm), L is

the integral length scale (i.e., the length scale of the largest turbulent

eddies) and u' is the root mean square velocity. Taking the ratio of -C. and

";i and simplifying yields:

T. - 1Re/2 ) (6.15)

where u'/Li z Re" 2 (Tennekes & Lumley, 1972) and Re = u'L/v is the

turbulent Reynolds number. Measurements of steady state sediment

transport in the experimental apparatus suggest that H/L - 3 (Chapter 5;

Brunk et al., 1996). The highest particle volume fraction used in the

turbulent coagulation experiments was (b = 10-, indicating that the

Reynolds number would have to be at least 10' for the well-mixed

assumption to be poor. The turbulent Reynolds numbers generated in the

apparatus were considerably lower than 108 (see Table 6.1); thus, the

assumption that the coagulating particles sample the entire reactor was

justified.

Comparison between experimental coagulation rates obtained in the

oscillating grid reactor and model calculations are predicated on obtaining
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Table 6.1: Measured and estimated parameters for the oscillating grid
turbulence apparatus. <]P> is the Kolmogorov shear rate spatially averaged
over the grid-stirred reactor. ilm is the smallest local Kolmogorov length
scale in the grid-stirred reactor. The smallest T) will be located in the region
of highest turbulence, -2 cm < x < 2 cm. <iq> is the spatially averaged
Kolmogorov length scale. Re = u'l/v is the turbulent Reynolds number.
Rex = u'X/v is the Taylor-scale Reynolds number where I z 4Rel/4il is the
Taylor scale. <Pe> = ra 2/D is the spatially averaged Peclet number where
D is the Brownian diffusivity of the 3.9 grm diameter particles.

Grid Frequency (Hz): 1 3 4 6 8

<r> (l/s) 3.7 19.3 29.6 54.3 83.6

'IMIN (9tm) 240 105 85 63 50

<,q> (Am) 520 228 184 135 109

Re 71 214 286 428 572

ReA 39 67.5 78 95 110

<Pe> 79 410 632 1162 1789
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an accurate estimate for the Kolmogorov shear rate distribution within the

reactor. As described above (Section 6.2.1), the Kolmogorov shear rate

can be found through scaling arguments by balancing the turbulent

dissipation rate, E, with the viscous dissipation to obtain Equation 6.3. The

difficulty in using this relation lies in obtaining an accurate estimate for the

turbulent dissipation rate. There are two main techniques that can be

employed to accomplish this: direct measurement of E and scaling

arguments. The dissipation rate is a small scale quantity that depends on

the mean square fluctuating velocity gradient tensor (Tennekes & Lumley,

1972). Since the power spectrum for the velocity derivative peaks in the

dissipation subrange of turbulence (i.e., at Kolmogorov length scales) a

direct measurement of E would require a velocity probe with spatial and

temporal resolution that is comparable to the Kolmogorov scales (e.g., r

0.5 mm ). The acoustic Doppler velocimeter used in this study had a

limited sampling resolution of about 3 mm that was unable to resolve the

fine scales of turbulence. For instance, turbulent kinetic energy power

spectra obtained with the instrument showed only a small portion of the

inertial ranges of turbulence. Consequently, an indirect measure was used

for estimating the turbulent dissipation rate.

The turbulent dissipation rate can be related to the turbulent energy

input at the large scales by (Tennekes & Lumley, 1972):

E ' (6.16)
L
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where y is an order one constant typically taken to be 0.8 (Townsend,

1976). Considerable empirical evidence suggests that this scaling

relationship provides a robust estimate for E (Tennekes & Lumley, 1972).

For convenience, Equation 6.16 is recast in terms of the turbulent kinetic

energy (E), where 1/2E = (3u')2 , and substituted into Equation 6.3. After

manipulation, an expression relating the Kolmogorov shear rate to the

turbulent kinetic energy and the integral length scale is obtained:

r 3 (6.17)

The variation of the integral length scale (L) with distance from the

oscillating grid (x) has been investigated previously (Hopfinger & Toly,

1976; Brumley & Jirka, 1987; E & Hopfinger, 1986). Hopfinger & Toly

(1976) found that L was proportional to x with the proportionality constant,

B, ranging from 0.1 to 0.35 depending on the grid stroke (St) and grid mesh

spacing (M). Further investigations by E and Hopfinger (1986) indicated

that B is larger for large St/M. The ratio of stroke to mesh size is large in

the reactor; therefore, a value of B = 0.35 was chosen for this study. In the

near field the integral length scale was set at the mesh spacing since this

length was expected to dominate in the oscillating grid region. The integral

scale was made a piecewise continuous function of distance from the

oscillating grid by setting L to the mesh size, 1.27 cm for x < 3.63 cm, and

allowing it to vary linearly with distance in the far field (x > 3.63 cm).
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At distances far from the oscillating grid, the integral scale velocity

decays with distance from the oscillating grid and is well represented by the

scaling relation developed by Hopfinger & Toly (1976):

u 'IJSt = CHT(St 1 /2 M 1 /2Ix) (6.18)

where f is the grid frequency (Hz), St is the grid stroke (4 cm for these

experiments), M is the center-to-center mesh spacing (1.27 cm for these

experiments), x is the horizontal distance from the center of the operating

grid stroke and CHT is a constant found to be about 0.25 (Hopfinger & Toly,

1976), although values of CHT ranging from 0.22 to 0.27 (De Silva &

Fernando, 1992) have been reported. This scaling relationship has been

subsequently verified by a number of other researchers (De Silva &

Fernando, 1992; Brumley & Jirka, 1987; Fernando & Long, 1985).

The isotropy of grid-generated turbulence may be used to rewrite

Equation 6.18 in terms of E (Chapter 5; Brunk et al., 1996):

E =3 C2 f 2 St3M
2 l- / 2 (6.19)

Estimates for the range over which Equations 6.18 and 6.19 are applicable

vary from x > 4St (De Silva & Fernando, 1992) to x > 2M (Atkinson et al.,

1987). As shown below, the Atkinson et al. (1987) estimate ofx > 2M

held well for the grid parameters used in these experiments.

For this work, the turbulent kinetic energy distribution in the near

and far field of the grid were both required to estimate the spatial

distribution of r using Equation 6.17. To that end, turbulence
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measurements were made as a function of distance from the oscillating grid.

The stroke was held constant at 4 cm and f was varied from 0 to 8 Hz

giving turbulent Re as high as 572 for f = 8 Hz. The turbulence parameters

obtained for the reactor are summarized as a function of oscillating grid

frequency in Table 6.1. Three-component velocity data were obtained for

different reactor operating conditions using the in situ ADV probe (Sontek

Inc., CA) at a data rate of 25 Hz for at least 300 seconds. At each grid

frequency, velocity samples were taken at several vertical and horizontal

positions in the plane a distance x from the oscillating grid and the velocity

data were combined for the ensuing analysis.

The scaling law for E depends only on distances parallel to the grid

motion, implying that grid-stirred turbulence is homogeneous in planes

perpendicular to the grid motion. Detailed mappings of the turbulent

kinetic energy variation over a plane parallel to an oscillating grid showed

an absence of long range structure and a relatively narrow variance relative

to the average E (Chapter 5; Brunk et al., 1996). Both results suggest that

the apparatus produced nearly homogeneous turbulence.

For each grid frequency, the turbulent kinetic energy data obtained in

the far field (i.e., x > 2M) was plotted against the right-hand side of

Equation 6.19 to verify the scaling relation in the reactor and obtain an

estimate for CHT. The scaling law fit the experimental data with r2 ranging

from 61 to 92% and the predicted CHT varied from 0.22 to 0.24 in

agreement with the work of others (Hopfinger & Toly, 1976; De Silva &

Fernando, 1992). In Figure 6.5 the data sets for various grid frequencies
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Figure 6.5: Comparison of the measured turbulent kinetic energy in the far
field with the grid scaling relation for the turbulent kinetic energy
(Hopfinger & Toly, 1976). For the experiments, St = 4 cm and f = 2 Hz
(squares), 3 Hz (circles), 4 Hz (triangles), 6 Hz (diamonds) and 8 Hz
(crosses).



286

are combined and compared with the scaling law using the frequency-

averaged value of CHT = 0.225.

Figure 6.6 summarizes the near field results obtained by plotting the

measured E versus distance from the oscillating grid center for frequencies

ranging from 3 to 8 Hz. The error bars are standard deviations from

independent experiments when available. The turbulent intensity displayed

no systematic dependence on position for distances less than 2 cm and

therefore the near field was represented as a constant value, shown by the

solid horizontal lines in Figure 6.6. A plot of the average turbulent kinetic

energy in the near field versus grid frequency (Figure 6.7) exhibits the

expected f 2 dependence. The symbols are averages of the E measurements

made in the oscillating grid region at each frequency and the error bars

represent 95% confidence intervals. The correlation, E = 2.93f 2 , fit the

data with an r2 = 99%. Here, E has units of cm2/s2 and f is in Hz.

By combining the turbulent kinetic energy scaling relations valid for

the inner and outer regions, a piece-wise continuous approximation to the

experimental data was obtained when x = 1.45 cm was used to separate the

near and far field results. The calculated E profile obtained for f = 8 Hz is

shown in Figure 6.8 along with the experimental data. At distances greater

than about 1.45 cm from the grid, the turbulence followed the Hopfmger &

Toly (1976) decay law shown as the solid line. Near the grid, turbulence

intensity was asswuned to be constant as illustrated with the dashed line in

Figure 6.8.

The average Kolmogorov shear rate at each operating condition was

obtained by taking the volumetric average of the measured F- distributions
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Figure 6.6: Spatial distribution of turbulent kinetic energy in the grid region
when St = 4 cm and f = 3 Hz (squares), 4 Hz (circles), 6 Hz (triangles) and
8 Hz (diamonds). The horizontal lines are averages for each grid frequency
and the error bars are +/- one standard deviation from the mean when
available.
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Figure 6.7: The average turbulent kinetic energy in the grid region versus
the grid frequency. The solid line is a best-fit to the experimental data and
error bars are 95% confidence intervals.
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Figure 6.8: The spatial distribution of turbulent kinetic energy (E) as a
function of horizontal distance from the oscillating grid. Results are shown
for St = 4 cm and f = 8 Hz. The solid line represents the expected far field
E distribution and the dashed line is an average of the measurements made
in the oscillating grid region.
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assuming homogeneity in planes perpendicular to the grid motion as

indicated by Equation 6.19. Table 6.1 lists the computed spatially averaged

Kolmogorov shear rates, <1P>, which range from 3.7 s-' at f = 1 Hz to 83.6

s"' at f = 8 Hz. The average Kolmogorov length scale varied from 520 to

109 gim as the grid frequency was changed from 1 to 8 Hz. The estimate

for Tl in the most turbulent regions of the tank (x = 0 cm) was found always

to be above 50 pim (see Table 6.1); therefore, the assumption that the

particle diameters (3.9 [rm) were much smaller than the Kolmogorov length

scale applied for all the operating conditions used in the coagulation

experiments.

6.5.3 Analysis of turbulent coagulation measurements

Turbulent coagulation experiments were conducted using the

procedure outlined in Section 6.3. Four to 6 independent experiments

were perfonned for each oscillating grid frequency. Figure 6.9 shows the

mass balance as a function of time for an experiment conducted at f = 6 Hz.

Shown are symbols for the two sampling ports as well as a solid line

indicating the average mass in the system and dashed lines denoting +/-10%

of the mean. The error bars show 95% confidence intervals in the

calculated concentrations based on Poisson statistics. Particle losses were

not observed over the lifetime of the experiment and no statistically

significant trend with sampling port was observed. These conditions also

hold for the other turbulent coagulation experiments reported here. In

addition, this mass balance illustrates how incomplete mixing was detected

during an experiment. The +/- 10% boundaries were used to flag outlying

samples exhibiting incomplete mixing and the aberrant samples were
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Figure 6.9: Volume concentration of particles as a function of time for a
turbulent coagulation experiment when the grid was oscillating at 6 Hz.
Shown are symbols for the two sampling positions. The solid line is the
time average volume concentration and the error bars are 95% confidence
intervals based on Poisson statistics. The dashed lines demarcate +/- 10%
of the mean and were used to identify data (marked with the arrow)
inadvertently collected before the reactor was completely mixed.
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removed from the analysis. In the experiment depicted in Figure 6.9, the

first sample taken (marked with the arrow in Figure 6.9) had an abnormally

high concentration indicative of incomplete mixing in the reactor and it was

dropped from further analysis.

The evolution of the singlet concentration for the same f = 6 Hz

experiment is plotted in Figure 6.10. Shown are different symbols for the

two sample ports. The error bars denote 95% confidence intervals based

on Poisson statistics. The incomplete mixing point tagged using Figure 6.9

is marked with an arrow on Figure 6.10. The solid line is a regression

through the data using the explicit break up model, Equation 6.13, in the

region where triplet formation was negligible. Triplet formation was

considered significant when the triplet formation rate was calculated to be

greater than 20% of the doublet formation rate. Equation 6.11 shows that

triplet formation became significant for S/S0 < 0.78. This corresponded to

data taken after 25 minutes and the boundary for significant triplet

formation is shown by the vertical dotted line in Figure 6.10. When triplet

formation is significant, the singlet concentration should decrease faster

than the model predictions based on doublet formation alone. The data in

Figure 6.10 does not show a deviation from the model prediction that

ignores triplet formation - in fact, the effect of triplet formation was not

observed for any of the experiments conducted. Since break up would be

expected to affect triplets more than doublets, perhaps it was instrumental

in keeping the number of triplets in the system low. The fit of the regressed

equation led to an estimate of kT = 431 gin 3/s. Similar analyses were

performed for additional experiments at f = 0, 1, 3, 4, 6, and 8 Hz.
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Figure 6.10: Coagulation rate data plotted for an experiment conducted
with f = 6 Hz. Non-linear regression using the integral rate expression with
break up (solid line) was used to estimate the coagulation rate constant.
The dashed line is the expected behavior if doublet break up is neglected.
The symbols represent the two sample ports and error bars are 95%
confidence intervals based on Poisson statistics. Data to the right of the
vertical dotted line was expected to have significant triplet formation based
on (3.4) and was not included in the regression. The arrow marks the data
collected before mixing was complete.
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The importance of particle breakup may be seen by comparing the

model prediction that includes particle break up with the prediction

obtained when break up is neglected, Equation 6.9. The dashed line in

Figure 6.10 shows the model prediction when break up is ignored. It can

be seen that break up is manifested by a deviation from the model

prediction that neglects break up (dashed line) at times greater than about

20 minutes.

A summary of the flocculation rate data obtained is shown in Figure

6.11, where the coagulation rate constant is plotted against average

Kolmogorov shear rate. The symbols represent the average of independent

experiments (4 to 6 runs for each grid frequency) and the error bars show

95% confidence intervals. A power law fit of the data (not shown in Figure

6.11) indicates that kT = 2.1a3I'r84 with an r2 of 99.9%. Here the units on r

are s1.

The analysis of the experimental data given in Section 6.3 assumes

the effect of Brownian coagulation is negligible. Peclet numbers based

upon the Kolmogorov scales and the particle radius (shown in Table 6.1)

are larger than 79 for all turbulent coagulation experiments suggesting that

Brownian motion did not influence the results. However, Feke &

Schowalter (1983, 1985) have shown that Brownian motion can affect the

coagulation rate in simple shear or uniaxial extension at Pe values of 150 or

higher. In steady flows at infinite Pe, large concentration gradients develop

at the boundaries between streamlines that lead to coagulation and those

that do not. Therefore, even at large Pe, Brownian motion allows particles

to diffuse across these boundaries, thus measurably affecting the predicted
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Figure 6. 11: Summary of the experimentally determined coagulation rate
constant as a function of average Kolmogorov shear rate. Shown are the
averages with 95% confidence intervals for experiments conducted at
several grid frequencies. The thin line is the prediction obtained when
interparticle interactions are not included. Including van der Waals
attraction and hydrodynamic interactions leads to the model prediction
shown by the thick solid line when the coagulation rate constant is
obtained by averaging over the local coagulation rates in the reactor.
When the predicted coagulation rate is calculated using the average
Kolmogorov shear rate, the curve presented as the dotted line results.



296

coagulation rate (Feke & Schowalter, 1983). In contrast, for a temporally

varying linear flow, large concentration gradients do not persist because the

fluctuating motion of the fluid acts to disperse particles. From a theoretical

calculation of coagulation in a randomly varying flow field with small total

strain, the author found that Brownian motion was unimportant for Pe

values much beyond 1 (Chapter 3; Brunk et al., 1997a).

Turbulence has an intermediate total strain; thus, Brownian motion

can be anticipated to be more important than predicted at the small total

strain limit but less important than the analysis of Feke & Schowalter

(1983) suggests. Although the effects of Brownian motion for isotropic

turbulence have not been explicitly modeled, the excellent agreement

between the model simulations and experiments (to be discussed below)

suggests the influence of Brownian diffusion was insignificant for the Peclet

numbers used in these coagulation experiments.

6.5.4 Comparison with nmodel predictions

The thin solid line in Figure 6.11 is the predicted coagulation rate

based on the model simulations Equation 6.6 described in Section 6.2 for

non-interacting particles (caT= 1). The thin solid line is also representative

of the coagulation rate that is predicted from the asymptotic limits of large

and small strain. Comparing the experimental data in Figure 6.11 with the

thin solid line shows that the actual coagulation rate increases more slowly

with shear rate than predicted by the non-interacting particle model. The

results that neglect particle interactions consistently overestimate the actual

rate of coagulation and the error is exacerbated at larger shear rates because

of differences in the power law dependence of k on <IF>.
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Predictions based on the model calculations that include interparticle

interactions are shown in Figure 6.11 as the thick solid line. The computer

simulations predict kT = 2.05a 3<P>0°84, in close agreement with the best fit

of the experimental data and yielding only a slightly lower r' = 99.8%. It

should be emphasized that no fitting parameters were used in this model

prediction and, as described previously, estimates for the Hamaker constant

and spatial Kolmogorov shear rate distribution were obtained in

independent experiments.

The reader is cautioned that the model predictions relating the

coagulation rate constant to the spatially averaged Kolmogorov shear rate

are system specific. Although the predicted power law dependence on F

should remain the same, the preexponential factor will depend on the

spatial distribution of turbulence within a particular system. The model

prediction shown as the thick solid line on Figure 6.11 was obtained by

spatially averaging the turbulent coagulation rate constant, i.e.,

16 cm

<k2> f kT(F(x))dx (6.20)
-4 cm

where spatial homogeneity in the plane perpendicular to the grid motion

was assumed, kT(F) was given by Equation 6.6 and ct(F) in Equation 6.6

was given by Equation 6.7. Based on Equation 6.20 and the measured F

distribution, approximately 45% of the total coagulation occurred in the far

field regions of the tank.

To illustrate the importance of accounting for local variations in r

throughout the reactor, consider the proposal to characterize the turbulence
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with the average Kohnogorov velocity gradient: <r'>. The model

prediction based upon kT(<-'>), shown as the dotted line on Figure 6.11,

overestimated the experimentally measured coagulation rate constants by

about 11%.

The only turbulent coagulation data by other investigators that is

amenable to comparison with the computer simulations is that published by

Delichatsios & Probstein (1975). These investigators measured the

coagulation rate of 0.6 ýtm diameter polystyrene particles in turbulent pipe

flow having Reynolds numbers ranging from 15,000 to 50,000 based upon

the pipe diameter and mean velocity. A summary of their results and a

comparison to our model predictions is shown in Table 6.2. Average

Kolmogorov shear rates ranged from 89 s- to 377 s' and measured

coagulation rate constants varied from 4.9 [tm 3/s to 17.7 jtm3/s for the most

destabilized systems reported. Error bars provided for the r = 221 s-'

experiments indicate a coefficient of variation of about 25% and the same

relative error was assumed for the other two experimental conditions.

Estimates of the coagulation rate assuming non-interacting particles

overestimate the coagulation rates observed by Delichatsios & Probstein

(1975) by factors of 4 to 5. The model predictions using the Hamaker

constant found in this work and an extrapolation of Equation 6.7 to 0.6 gtm

diameter particles overestimated the coagulation rate by 22 to 37% when

the average Kolmogorov shear rate in the core region was used to

characterize the turbulence within the pipe.

It is difficult to judge the accuracy of Delichatsios & Probstein's

experiments. This prior work did not consider particle break up, triplet
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Table 6.2: Comparison of model prediction with the turbulent coagulation
data collected by Delichatsios & Probstein (1975) in pipe flow. Model
prediction uses the Hamaker constant obtained in this work and assumes a
constant Kolmogorov shear rate in the turbulent pipe. Superscripts in the
table stand for experimental measurements (exp), model prediction with
interparticle forces (pred) and model prediction for non-interacting particles
(0). The uncertainty interval in the experimental data corresponds to a 25%
coefficient of variation using results summarized for the - = 221 s-' data
set.

<IF> kTexp kTPred % kT0

(l/s) (tm 3/s) (tm 3/s) Difference (jim 3/s)

89 4.9±1.2 6.8 37% 20.7

221 11.9+3.0 14.5 22% 51.4

377 17.7+4.4 22.7 28% 87.7
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formation, or whether the implicit assumption of excess singlets was

satisfied. This model prediction is considerably better than estimates based

on non-interacting particles and deviations from the experiments can at

least partly be explained by experimental accuracy. The trend of the

experimental data was well represented by a power law correlation of the

form: k = 4.52a3 P°84 (r2 = 99.5%), where the units on r are s-1. Thus, the

turbulent pipe experimental coagulation data shows the same power law

trend as that predicted by the computer simulations. The Peclet number of

the turbulent pipe flow experiments were 5 to 23, about an order of

magnitude lower than the Pe for the experiments reported in this paper.

Therefore, it is likely that Brownian diffusion affected the results of

Delichatsios & Probstein's work. Brownian motion increased the

coagulation rate in Feke & Schowalter's (1984) analysis of simple shear

coagulation and in the author's pair diffusion approximation for coagulation

in a random linear flow (Chapter 3; Brunk et al., 1997a). This expectation

is in opposition to the discrepancy between the experimental data of

Delichatsios & Probstein and the non-Brownian model predictions

presented in Table 6.2. The spatial variation of turbulent shear rates in the

pipe flow was ignored in the analysis of Delichatsios & Probstein's

experimental data and this could partially explain the difference between

experiment and simulation. For grid-stirred turbulence, the constant

Kolmogorov shear rate approximation led to model predictions that

overestimated the experimental results. Except very near the pipe wall,

turbulence in pipe flow is nearly homogeneous (Delichatsios & Probstein,

1975). While it is likely that spatial heterogenities in the turbulent shear
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rates caused some of the error in the model predictions for Delichatsios &

Probstein's coagulation experiments, preliminary analysis suggests that the

relatively small turbulent boundary layer in pipe flow is unlikely to

drastically alter the model prediction summarized in Table 6.2. Doublet

break up due to the high Kolmogorov shears rates in the pipe flow is

another possible cause for the differences between the model and

experimental data of Delichatsios & Probstein (1975). An inspection of the

experimental singlet evolution data in the turbulent pipe flow coagulation

experiments does not show deviations from linearity, indicating that break

up was probably unimportant. In light of these concerns, the simulations

with interparticle forces reproduce the coagulation experiments conducted

by Delichatsios & Probstein (1975) remarkably well and are able to predict

the correct dependence on Kolmogorov shear rate.

6.6 Summary and conclusions

Experimental measurements of turbulent coagulation were made in

an oscillating grid reactor and compared with model predictions that

included viscous effects and van der Waals attraction. An initially

monodisperse suspension of 3.9 gm diameter polystyrene beads was placed

in the reactor and the loss of singlets over time was measured as a function

of turbulence intensity in the apparatus. The particles were smaller than the

Kolmogorov length scale so that turbulent shear rates at the Kolnogorov

scale controlled the coagulation rate while differential settling and particle

inertia effects were minimized by running the experiments in density

matched fluids.
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Grid-stirred devices produce a well characterized, nearly isotropic

turbulence that decays rapidly with distance from the oscillating grid.

Considerable effort was expended to measure the spatial distribution of

turbulence within the reactor so the experimentally observed average

coagulation rate constant could be related to an average of the local

coagulation rates within the reactor. Grid scaling laws developed and

verified by others (Hopfinger & Toly, 1976; De Silva & Fernando, 1992;

Brumley & Jirka, 1987; Fernando & Long, 1988) were found to represent

the turbulent kinetic energy at distances greater than about 2M from the

oscillating grid. Within the grid region (x < 2 cm), the turbulent kinetic

energy showed no systematic variations with position and was, therefore,

represented as a constant. A scaling law was used to relate the measured E

profiles to the dissipation rate in the reactor and then through

Kolmogorov's similarity hypothesis to the Kolmogorov shear rate, F-.

The experimental coagulation rate constant was found to be

proportional to <1r>0.84, in agreement with the model predictions. For

comparison, analytical (such as Saffinan & Turner, 1956 or Chapter 3,

Brunk et al., 1997a) and model (Chapter 4; Brunk et al., 1997b) predictions

that neglect particle interactions suggest that k -, F. These results,

summarized in Figure 6.11, indicate that interparticle interactions play an

important role in controlling the rate of turbulent coagulation. Model

predictions incorporating particle interactions were obtained by averaging

over the local coagulation rate constants in the reactor. These simulation

results agreed with experiment (r' = 99.8%) without use of adjustable

parameters. The spatial variation of turbulence within a coagulating system
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was shown to influence the model prediction. For instance, characterizing

the turbulence in the tank with <IP> led to a prediction that overestimated

the experimental data by 11%.

Comparison of the model and experimental turbulent coagulation rate

constant predictions required knowledge of the Hamaker constant for the

coagulating polystyrene beads. The Hamaker constant was obtained

through Brownian coagulation experiments. A Hamaker constant of

0.75kbT, consistent with other investigations (Russel et al., 1989), resulted

in agreement between the experimental and theoretical Brownian

coagulation rate.

To the author's knowledge, no previous attempt has been made to

quantify the importance of particle interactions in turbulent coagulation of

interacting particles, either theoretically or experimentally. Numerous

studies have, however, been conducted for steady linear flows (see Greene

et al., 1994 for a review of past work.). Trajectory calculations for

coagulation in simple shear and uniaxial extension that include

hydrodynamic and van der Waals forces show a similar dependence on the

shear rate as that obtained in this paper. Feke & Schowalter (1983) found

that k - 10'77 for simple shear and Zeichner & Schowalter (1977) obtained

k _, 11-8 for uniaxial extension, both are similar to the k - r1.84 dependence

measured for turbulent coagulation in this work.

Considerable empirical evidence garnered from flocculation studies

of natural sediments indicate that collision efficiencies near 10% are typical

for destabilized colloidal particles (O'Melia, 1995). The turbulent shear

rates and particle sizes used in this research are within the range of typical
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values expected for natural aquatic environments such as estuaries (Krone,

1970; McCave, 1984) and so collision efficiencies calculated for the data

reported here are amenable to comparison with field measurements. The

collision efficiency for the experimental data in Figure 6.11 can be

estimated by dividing the flocculation rate obtained experimentally with

that predicted by the non-interacting model given by Equation 6.6 with a.T =

1. The calculated collision efficiencies fall from 15% at the low shear rates

to 9% at the highest shear rate examined in these experiments, in qualitative

agreement with field measurements (O'Melia, 1995).

The similarity of the theoretical predictions and the experimental

measurements is remarkable considering the expected errors associated

with using scaling arguments to calculate I'. While the absolute values of

the Kolmogorov shear rate in the reactor may be suspect, the predicted

k - <r>0.84 power law remains robust. Therefore the computer simulations

of coagulation in isotropic turbulence at finite total strain (Chapter 4; Brunk

et al., 1997b) capture the essential physics of turbulent coagulation. For

neutrally buoyant particles with diameters smaller than the length scales of

turbulence, the rate of coagulation is dominated by the Kolmogorov scales

of turbulence. Relative particle motion on length scales comparable to the

particle radius is the rate limiting step for turbulent shear coagulation and

consideration of particle interactions is necessary to explain experimental

observations. Since isotropy at the small scales is universally seen for

turbulent flows, the turbulent coagulation simulations validated in this thesis

should have wide application to other engineered and naturally occurring

turbulent systems.
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CHAPTER 7:

CONCLUSIONS

Equilibrium sorption of phenanthrene in a simulated estuarine water

column and turbulent shear-induced coagulation of monodisperse spherical

particles was investigated in this thesis. In the two sections below

important conclusions garnered from this research are summarized and

directions for future research are discussed.

7.1 Sorption

Extensive pollutant sorption to settling suspended particulates has

often been invoked to explain the observed pollutant trapping behavior of

estuaries. Equilibrium sorptive interactions were studied for a model

estuarine system consisting of phenanthrene, two clays and several

recalcitrant dissolved organic compounds as a function of salinity. The

experimental sorption coefficients were used to ascertain the extent to

which sorption can explain pollutant phase distribution in estuaries.

The sorptive interactions between phenanthrene, a bacterial

extracellular polymer and kaolinite clay were combined into an equilibrium

sorption model for the overall sorption coefficient for phenanthrene.

Increasing the ionic strength from fresh to marine levels causes a 55%

increase in the overall sorption coefficient. Contrary to expectations,

sorption of phenanthrene to the clays is not significantly enhanced by the

presence of DOM in the system. For example, in the phenanthrene,

309
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kaolinite clay and bacterial extracellular polymer system, DOM increases

the sorption of phenanthrene to the clay by about 9% at all salinities. In

contrast, at very low ionic strengths, small increases in ionic strength have

been observed to strongly influence DOM sorption to inorganic sorbents

(Tipping, 1981; Tipping & Heaton, 1983; Dempsey & O'Melia, 1983).

Results from this study suggest that the effect of ionic strength on DOM

sorption becomes saturated at ionic strengths lower than those typically

seen in the estuary.

Field measurements of phenanthrene concentrations in sediment and

their associated pore waters suggest that greater than 90% of the total

phenanthrene in an estuary is trapped within the sediments. Results from

the author's investigations of phenanthrene sorption indicate that in the

water column only 0.1% of the phenanthrene would partition to the

sediments. A similar analysis carried out with other pollutant/sorbent

systems also shows phenanthrene trapping of less than 50%. These

experiments and model calculations indicate that equilibrium sorption is not

sufficient to filly explain the elevated levels of phenanthrene (or other

hydrophobic pollutants with comparable sorptive properties) found on the

bottom estuarine sediments.

7.1.1 Comments and future work

The unexpectedly high distribution coefficients for phenanthrene

measured in estuarine sediments have also been the foci of other research

(McGroddy et al., 1996; Gustafsson et al., 1997). It has been proposed

that atmospheric deposition of PAH laden soot particles may be the origin

of the high sediment PAH concentrations (McGroddy & Farrington, 1995;
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McGroddy et al., 1996). Recently, Gustafsson et al. (1997) have

successfully predicted the apparent partitioning of phenanthrene in the pore

waters by characterizing the sediment in terms of its soot content and by

using a surrogate for the phenanthrene/soot sorption coefficient. Their

contention is that the extremely high solid phase PAH concentrations

measured on estuarine sediment is the result of this high affinity soot.

Extending Gustafsson et al.'s (1997) calculations further by

considering the expected behavior of soot particles as they fall through the

estuarine water column is worthwhile. Simcik et al. (1996) estimated

atmospheric soot fluxes to Lake Michigan to range from 600 to 800

mg/m2/year. The steady state soot concentration in the water column can

be estimated by dividing the flux by the settling velocity of the soot in the

water. The settling velocity was calculated with the Stokes settling

velocity equation assuming 4 gnm diameter soot particles (Maruya et al.,

1996) and by assuming the soot density was equal to that for graphite.

Based on the above assumptions, the water column soot

concentration was expected to be about 3 mg/m3 . In the subsequent

calculations a conservative suspended soot concentration of 10 mg/m3 was

used and a phenanthrene/soot partition coefficient of log Ksc = 7.1 was

taken from Gustafsson et al. (1997). The fraction of phenanthrene

calculated to be sorbed to sediment was 11% - much lower than the 90%

trapping level obtained from direct measurements of phenanthrene in the

aqueous and sediment phases (McGroddy & Farrington, 1995). This

discrepancy may be attributable to slow desorption of phenanthrene

introduced into the water column along with the soot; however, since
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residence times in the water column are on the order of days (Bates et al.,

1987) and the soot particles are so small, mass transport limitations would

be minor. To see this assume an aqueous diffusivity for phenanthrene of D

= 10- cm2/s. The effective diffusivity accounting for hindered diffusion

through the soot particle due to sorption would be D, = D/K. = 10"'

cm:/s. An estimate of the characteristic time for phenanthrene to diffuse

out of the soot particle is proportional to tD= a0/De where a is the particle

radius. For the 4 pim diameter particles considered earlier, this results in

tD = 4.6 days which is comparable to water coltunn residence times in the

estuary (albeit this estimate would increase if tortuosity was significant.).

If this characteristic diffusion time applies, significant desorption would

have been expected to occur.

As a result of these order of magnitude calculations, the prognosis

for sorption as a mechanism to explain the observed trapping of

hydrophobic pollutants is doubtful. Furthennore, these calculations bring

into question the assertion that soot-bound PAH results from a sorptive

process. It would therefore be interesting to conduct additional

investigations of PAH/soot interactions.

Some areas for further research include:

Recent work by Gustafsson et al. (1997) suggests that PAHs are

sorbed to soot. The kinetics of PAH sorption to and desorption from

soot could be characterized and used to estimate PAH losses while

the soot is resident in the water column. The results could also be

used to find if all of the PAH in the soot is available for equilibrium

phase partitioning.
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Soot is commonly presumed to be composed of highly aromatic

carbon (Simcik et al., 1996). While measuring the PAH content of

soot artifacts may be introduced because of the aromaticity of the

soot matrix itself. That is, protocols for measuring PAHs on solids

often involve heating and other harsh conditions that may

inadvertently cause further combustion of the soot particle and

possibly additional PAH generation. Further research is needed to

investigate errors associated with quantifying PAH concentrations

on soot.

The sorption work described in this thesis focused on sorptive

interactions of an organic pollutant in the water column. Heavy

metals are another important class of aquatic pollutant. Since heavy

metals are strongly sorbed, it would be interesting to extend the

analyses and experiments described in Chapter 2 to estimate extents

of trapping for heavy metals.

7.2 Turbulent coagulation

Saffinan and Turner (1956) predicted the aggregation rate of small

particles in a turbulent flow under the assumptions that the turbulent strain

is persistent and the hydrodynamic and colloidal interactions between the

particles can be neglected. In this work, the effects of interparticle forces

on the coagulation rate are considered, and the influence of the finite

Lagrangian strain rate correlation time on coagulation is obtained.

The relative motion of two particles with diameters smaller than the

Kolmogorov length scale is expressed as a locally linear flow field with a



314

temporally varying velocity gradient. The Reynolds number based on the

particle diameter and the local shear rate is assumed to be small and, if the

suspending fluid is a liquid, the particle inertia is assumed negligible.

The local flow field is characterized in terms of the root-mean-

squares of the strain and rotation rates and their correlation times. Saffinan

and Turner's analysis applies when the product of the root-mean-square

strain rate with the strain rate correlation time is very large. In Chapter 3

the relative motion of the interacting particles is treated as hydrodynamic

pair diffusion in the opposite limit of very short correlation time. This limit

facilitates the inclusion of hydrodynamic and colloidal interactions in semi-

analytic predictions of the coagulation rate. Under these conditions colloid

stability is found to increase with increasing particle size and turbulent

shear rate because of high hydrodynamic resistance to particle collision.

For similar shear rates and particle sizes, colloids are less stable in the

randomly varying flow than in steady linear flows such as simple shear.

This behavior is attributed to the presence of hydrodynamic drift which

leads to the accunulation of close pairs and therefore acts like an

additional attractive force when calculating the coagulation rate.

Direct numerical simulations (DNS) of turbulent flows indicate that

the strain rate correlation is intermediate between the two limits noted

above (Pope, 1990). To detennine the coagulation rate in an actual

turbulent flow, numerical simulations of the relative motion of particles in

an isotropic, Gaussian, random velocity field with the same temporal

covariance of strain rate and vorticity observed in DNS were conducted

(see Chapter 4). In the absence of interparticle interactions the simulated
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coagulation rate is significantly different from the large (Saffinan & Turner,

1956) and small (pair diffision approximation, this thesis) total strain

asymptotic limits. For isotropic turbulence the simulations predicted a

coagulation rate constant of 8.62ra3, where P is the Kolmogorov shear rate

and a is the particle radius.

Simulations run at large total strain are about 5% lower than

Saffmnan & Turner's (1956) prediction that neglect fluid rotation. When

the effects of rotation are turned off in the simulation, Saffinan & Turner's

results are attained. The rotation rate is found to decrease the observed

rate of coagulation and this shows that the effects of strain and rotation

cannot be separated when considering coagulation. The addition of

rotation leads to the fonnation of closed trajectories that leave and

subsequently return to the collision radius. These closed trajectories do not

give a net contribution to the overall coagulation rate. In addition, the

importance of rotation depends on its correlation time. For long rotation

rate correlation times, closed trajectories persist and are thus important in

lowering the overall coagulation rate. Conversely, for short rotation rate

time scales, the location of closed trajectories fluctuates rapidly so particles

can escape the closed trajectories before returning to the collision radius.

The effect of Kolmogorov shear rate on the coagulation of spherical

particles is experimentally investigated using an oscillating grid reactor.

As discussed in Chapter 5, the apparatus is designed and built to simulate

the vertical variations of turbulence levels in natural hydrodynamic systems

such as rivers and stratified estuaries. As such, it offers excellent

capabilities for simultaneous control of solution chemistry, mass transport
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and hydrodynamics. The reactor contains five vertically spaced,

independently oscillating turbulence generating grids. Measurements of

the turbulent kinetic energy (TKE) in front of an oscillating grid indicate

that the instrument can produce nearly homogeneous turbulence. The TKE

decays with distance from the oscillating grid and a scaling law based on

grid parameters fit the data well. Further investigations focused on

simulating steady state vertical turbulence and sediment loading

distributions expected for open channel and homogeneous flow conditions.

Sediment loading in homogeneous turbulence was fit using a sediment

transport equation that balances turbulent diffusion and particle settling.

From the results, a characteristic turbulent length scale of 8.9 cm is

obtained. Open channel flow turbulence and sediment loading distributions

are in good agreement with previously published relations. The

experimental program described in Chapter 5 indicates that the apparatus

can reproducibly simulate a variety of hydrodynamic and sediment loading

conditions.

The initial coagulation rate of monodisperse particles was measured

as a function of the turbulent shear rate within the reactor. The average

Kolmogorov shear rate for a given grid frequency was estimated by

measuring the turbulent kinetic energy as a function of position from the

grid and relating it to the Kolmogorov shear rate using scaling arguments

valid in the inertial subrange. The initial coagulation rate of particles

(diameter = 3.9gtm +/- 0.3ýtm) was monitored as a function of grid

frequency. The coagulation rate increased with average Kolmogorov shear

at a rate less than that predicted from coagulation rate laws that ignore
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hydrodynamic interactions and interparticle forces. From Brownian

coagulation experiments a Hamaker constant of 0.75kT was found for the

polystyrene test beads. Using the experimentally obtained Hamaker

constant and the distribution of Kolmogorov shear rates in the reactor, the

model predictions based on Chapter 4 were compared with the

experimental data using no adjustable parameters. The excellent

agreement between the model and experiments indicates that the

simulations capture the physics of turbulent coagulation.

7.2.1 Future work

At this point a relatively robust model for computing the coagulation

rate of spherical, monodisperse particles in turbulent flows has been

obtained. While the results described in the previous chapters can be used

to gain a qualitative understanding of turbulent coagulation for complex

systems, several avenues need to be explored before the results can be

used to obtain a quantitative picture of turbulent flocculation in natural

systems where particles are inhomogenous, non-spherical and large

multiple-particle aggregates can form. Some areas for fuirther research

include the following:

• The existing turbulent coagulation computer simulation can be

extended by adding the effects of electrostatic double layer

repulsion. Of particular challenge is investigating secondary

minimum flocculation and being able to predict when salt

destabilization of colloidal particles will occur.

• Brownian motion has been investigated in the pair diffusion

approximation described in Chapter 3 and for steady linear flows
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(Feke & Schowalter, 1983, 1985). Simultaneous Brownian motion

and turbulent coagulation could be computed. Understanding

coagulation rates when both Brownian motion and turbulent

coagulation are significant would be important if the simulations

presented in Chapter 4 are to be extended to smaller particle sizes.

* While coagulation of single particles in the presence of interparticle

forces has been well-characterized, additional work needs to be

done on coagulation of multiple-particle aggregates. In this case the

particles are no longer spherical - they may be highly porous and

have fractal geometries that vary with time.

The differential turbulence column has been successfully used to

simulate a variety of natural aquatic systems as well as measure

turbulent coagulation rates of polystyrene beads. The next logical

step might be to use this device to measure and model coagulation

rates in selected natural aquatic environments.
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APPENDIX A:

SUPPLEMENTAL REFERENCES

A. 1 Selected bibliography

The following textbooks are considered to be good resources for

understanding the concepts and terminology employed in this thesis:

Generalfluid dynamics
BIRD, R. B., STEWART, W. E. & LIGHTFOOT, E. N. 1960 Transport

Phenomena. Wiley.

Turbulence
TENNEKES, H. & LUMLEY, J. L. 1994 A First Course in Turbulence. MIT

Press.

Colloids and hydrodynamic interactions
RUSSEL, W. B., SAVILLE, D. A. AND SCHOWALTER, W. R. 1989 Colloidal

Dispersions. Cambridge University Press.

Colloids and equilibrium sorption
STUMM, W. & MORGAN, J. J. 1981 Aquatic Chemistry, 2 "d ed. Wiley.

Estuaries and hydraulics
FISCHER, H. B., LIST, E. J., KOH, R. C. Y., IMBERGER, J. & BROOKS, N. H.

1979 Mixing in Inland and Coastal Waters. Academic Press.
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A.2 Definition of selected terms

The following definitions are provided to aid the non-fluid

mechanician reader:

correlation time: time interval over which a random variable is

related to another random variable; mathematically, the time integral of the

autocorrelation function.

rotation rate: the anti-symmetric component of the velocity gradient;

leads to a solid body rotation in which fluid particles follow circular

trajectories around the origin; all stream lines are closed; rate at which two

fluid particles revolve about the origin.

shear: general term for the velocity gradient.

simple shear: a unidirectional flow in which the velocity in the x-

direction depends on the y-direction, i.e., u = yy where u is the velocity in

the x-direction and y is the shear rate.

strain rate: the symmetric component of the velocity gradient tensor;

in a linear straining flow, all streamlines go to infinity (also known as

extensional or stagnation point flow); rate at which two fluid particles are

separated.

turbulent dissipation rate: rate at which turbulent energy is

transferred from the energy containing large scale eddies to the smallest

scales of turbulence; units are length2/time3 ; rate at which turbulent energy

is lost to heat via viscous effects.

velocity gradient: the spatial derivative of the velocity, i.e., du/dx.



APPENDIX B:

SUPPLEMENTARY MATERIAL ON EQUILIBRIUM SORPTION

OF PHENANTHRENE AND POLLUTANT TRAPPING

CALCULATIONS

B. 1 Materials and Methods

B. 1.1 Materials

Table B. 1 lists additional information about the materials used as

surrogates for the hydrophobic pollutant, dissolved organic matter (DOM)

and suspended sediment.

B. 1.1.1 Dialysis technique

A modified dialysis technique (Carter & Suffet, 1982; Alien-King et

al., 1995) was used to obtain the distribution coefficient for phenanthrene

onto kaolinite clay. This procedure eliminated the difficulty of separating

the kaolinite clay from the aqueous solution and hence circumvented what

has been termed the "solids effect" (Gschwend & Wu, 1985). A dialysis

membrane 6-8,000 MWCO was filled with an aqueous solution of desired

salinity and then sealed using nichrome wire. The bag was placed into a

30 ml amber hypo-vial (Wheaton, Milwaukee, WI) along with additional

aqueous solution, a known weight of clay (0.1 to 1.0 g) and an aliquot of

radiolabeled '4C-phenanthrene. The vial was crimp-capped using a

Teflon® backed septum and placed on a rotating drum mixer in the dark at

25°C for 6 days. A series of long term experiments performed over 18
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Table B.1: Properties of estuarine model surrogates

Properties of Mineral Sorbents

Kaolinite Bentonite

Density"b (g/ml) 2.58 2.80

Average diameterab (gtm) 1.5 1.5

Specific surface areab (m2/g) 8.0 n/a

Organic contentc (%) 0.076 2.03

CECC (cmol/kg) 11.08 76.13

Properties of Phenanthrene

Formula Structure MW Solubilityd log Kowd Henry's law
(jtg/L) constante

C14H110  178.2 960 4.5 0.582

Properties of 9702-M4 extracellular polymere

Constituents Molar ratio relative to
glucuronic acid

glucose 1.62

galactose 1.39

glucuronic acid 1.00

% Carbon by weight = 40.2
Molecular weightf = 500,000 Daltons

'verified in the Cornell Environmental Engineering laboratory, Cornell University, Ithaca,

NY. bfrom manufacturers specifications. 'measured by the Cornell Nutrient Analysis
Laboratory, Cornell University, Ithaca, NY. d Chin & Gschwend, 1992. '1990 CRC
Handbook. fDohse & Lion, 1994.
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days showed that a 6 day equilibration time was more than sufficient to

reach stable phenanthrene concentrations. After equilibration, samples of

solution inside and outside the dialysis membrane were each mixed 1:10

with scintillation cocktail (Ecoscint, National Diagnostics, Atlanta, GA)

and counted on a Beckman LS9800 liquid scintillation counter (Irvine,

CA). The presence of clay slurry within the counting samples did not

affect the scintillation results. All counting results were corrected for

quench and background levels of radioactivity. Assuming all phenanthrene

sinks were at equilibriumn, the relative concentration difference of

phenanthrene between the aqueous phase inside the dialysis bag and the

clay slurry led to the sorption coefficient. A mass balance on the

phenanthrene in the slurry phase yielded:

PAH [PAH]sl Vj - [PAIR], Vla[PA -s = Ks' [PAH] a Wk (B.1)

where [PAH]SI is the concentration of phenanthrene in the slurry phase, Vsj

is the slurry volume, Vs.a is the liquid volume in the slurry and Wk is the

weight of kaolinite added to the slurry.

B. 1.1.2 Centrifugation technique

The dialysis procedure could not be used in experiments that

included the extracellular polymer because the molecular weight cutoff of

the dialysis tubing was too small to allow the polymer to pass freely.

Particle separation by centrifugation offered an alternative, albeit a

possibly inaccurate one due to incomplete solid/aqueous phase separation
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(Gschwend & Wu, 1985). This method was used to ascertain the

equilibrium distribution coefficient for extracellular polymer sorbing to

kaolinite clay and to observe sorption of phenanthrene to clay in the

presence of DOM surrogates. Glass microreaction V-Vials (5 ml nominal

volume, Wheaton, Milwaukee, WI) were filled with approximately 0.3g of

kaolinite clay, 4,000 to 30,000 DPM (disintegrations per minute) of

radiolabeled sorbate and approximately 5 ml of saline solution. The vials

were crimp capped with Teflon® faced septa and allowed to equilibrate at

25°C on a rotating drum mixer. Samples were mixed for 48 hours and then

centrifuged at 2250g for 30 minutes in a Hermle ZK5 10 swing bucket

centrifuge (Germany). Aliquots of the aqueous phase were counted on the

Beckman LS9800 liquid scintillation counter. Slow desorption of the

phenanthrene from the polymer was found to affect the isotope levels

measured by the scintillation counter; therefore, liquid scintillation counting

was repeated daily until the phenanthrene activity remained constant

between successive measurements. The equilibrium sorption coefficient

was obtained from a mass balance equation which was modified to include

corrections for sorptive bottle losses (Lion et al., 1990).

Mý - (Kb' + V )[Sorbate]
[Sorbate], = Kd[Sorbate]a = ]a (B.2)

Wk

where Ms is the mass of sorbate added to the bottles (DPM), Kbs is the

distribution coefficient for the sorption of sorbate to the bottle (ml/bottle)

and Va is the aqueous phase volume (ml).
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B. 1.1.3 Fluorescence quenching

Fluorescence quenching experiments (Backhus & Gschwend, 1990;

Gauthier et al., 1986) were used to elucidate the distribution coefficient

between phenanthrene and the extracellular polymer. For each experiment

two acid and base washed 1 x 1 x 4 cm quartz cuvettes were used. One

cuvette was filled with 2 ml of an aqueous phenanthrene solution at the

desired salinity and was employed to determine phenanthrene sorption to

the extracellular polymer. The other cuvette, used to correct for

fluorescence caused by the extracellular polymer, was filled with 2 ml of

saline solution. The cuvettes were allowed to equilibrate for several

minutes and the initial fluorescence was recorded using an SLM Aminco

8000 spectrofluorimeter with excitation and emission wavelengths of 288

nm and 364 nm, respectively. Incremental 100 gl aliquots of an

extracellular polymer stock solution were added to the cuvettes.

Equilibration was observed to occur very rapidly; however, the vials were

allowed to mix 2 minutes before the fluorescence intensity was measured

again. Between measurements, care was taken to close the shutter of the

spectrofluorimeter to prevent photodegradation of the phenanthrene.

Preliminary experiments suggested that even after 30 minutes of continuous

exposure to the excitation wavelength, photodegradation was undetectable.

Polymer addition, solution equilibration, and fluorescence measurement

were repeated 6 more times until a total of 700 pl of polymer stock

solution had been added to each vial.
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The protocol of Gauthier et al. (1986) was followed to obtain

correction factors for apparent quenching or "inner filter effects."

Apparent quenching was quantified with absorbance experiments using a

Hewlett Packard 8457A diode array spectrophotometer (Wilmington, DE).

Quartz cuvettes identical to those described in the fluorescence phase of

the experiment were used and the absorbance of the emission and

excitation wavelengths was measured as a function of extracellular

polymer concentration and salinity. Changes in salinity were not observed

to affect the absorbance measurements; however, correction factors due to

the polymer ranged from 0 to 30% as the concentration of extracellular

polymer increased.

The fluorescence intensity measurements were adjusted for

background fluorescence and "inner filter effects" before data analysis.

Significant loss of phenanthrene to container walls was not observed and

significant volatilization of the phenanthrene was not expected over the

time frame of the analysis since the cuvettes were fitted with Teflon® caps.

The Stem-Volmer equation was used to relate the ratio of the fluorescence

intensity to the distribution coefficient for phenanthrene sorbing to

extracellular polymer (Gauthier et al., 1986):

F0  PAH
- =LDOAH[DOM]a + 1 (B.3)F

where Fo and F are the fluorescence intensity before and after the addition

of extracellular polymer, respectively.
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B.2 Evidence for enhanced sorption due to DOM coatings

Figures B.1, B.2 and B.3 show the experimental evidence for

enhanced sorption of phenanthrene caused by increased DOM coating at

high salinities for different clay:DOM weight ratios. The normalized

distribution coefficient is the ratio of the distribution coefficient at 30 ppt to

the value at 0 ppt salinity. This ratio is then normalized with the ratio at a

clay:DOM value of oo to remove phenanthrene "salt effects" from the

results. Nonnalized distribution coefficients greater than 1 indicate that

DOM coatings enhanced sorption, while values less than 1 mean the DOM

prevented the phenanthrene from sorbing strongly to the clay when the

salinity was increased. The sorption coefficients obtained in this analysis

are tabulated in Table B.2.

B.3 Literature review of typical sorption coefficients

The level of pollutant trapping for a model system of phenanthrene,

humic acid and kaolinite clay was evaluated using literature values for the

sorption coefficients characterizing the interactions between the three

components. Table B.3 summarizes the list of sources consulted in this

analysis.
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alginic acid/bentonite (<>). Error bars are +/- one standard deviation from
the mean.
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APPENDIX C:

ALTERNATIVE DERIVATION OF THE DRIFT VELOCITY AND

PAIR DIFFUSION COEFFICIENT IN A RANDOM LINEAR

FLOW WITH SMALL TOTAL STRAIN

C.1 Objective

In Chapter 3 theory is developed for describing particle transport

and coagulation in a random linear flow with small total strain. Here we

examine the pair probability equation derived in Chapter 3 and by

considering the moment equations show that the conservation equation

should include a drift term leading to a non-uniform pair probability

distribution biased toward small particle separations.

C.2 Pair probability conservation equation

As discussed in Chapter 3, the flow field is assumed to be linear on

scales comparable to the particle radius and statistically stationary in time

with separate strain and rotation rate time scales. The analysis is restricted

to flows where the product of the characteristic strain (rotation) rate and its

correlation time is small. By considering particle movement over times

long compared with the flow field correlation times, the pair probability

responds as a diffusive process.

For simplicity, the pair probability equation in the absence of

Brownian motion and interparticle potentials (i.e., van der Waals attraction

337



338

and electrostatic double layer repulsion) will be considered. The pair

probability conservation equation for a diffusive process is (Pope, 1985):

+- a"- - =0 (C.1)

where P is the pair probability distribution function, ri is the relative

position vector connecting the centers of two particles, Vif is the drift

velocity and D1if is the pair diffusion coefficient. The drift velocity is

included in the above expression with the expectation that it is non-zero.

Equations for the drift velocity and diffusion tensor are found by computing

the first and second moments of Equation C. 1 with respect to the particle

separation.

C.2.1 First Moment Equation

Multiplying Equation C. 1 by rk and ensemble averaging over all

possible particle separation vectors leads to:

faP +r a K _] Oa 0dr(C2
[kat, +t r[J (C.2)

Consider Equation C.2 term-by-tern. The first term reduces to the average

particle velocity. That is,

f rkap dr = <rk>C.3)
at at

r
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where the angled brackets indicate ensemble averaging over all possible

spatial configurations of the two particles. Given an initial starting position

of the particle pair, the pair probability is assumed to remain localized in

that area. This means that the spatial averaging employed to obtain

Equation C.3 does not introduce spatial smoothing of the terms in brackets.

Using the product rule, the second term in Equation C.2 can be rewritten

as:

a{[kiPrDP ]p - 8~k Vý'P-Dfap ]dr(C4

where use has been made of the fact that ark/6 ri = 6 ik and 6 ik is the identity

tensor. The divergence theorem allows the first term in Equation C.4 to be

rewritten as a flux integral over a spherical surface of radius r:

f-rkJP -rkDfi ap r f !rkvPrkkfar 3 dr (C.5)

where r is the magnitude of ri and 8r refers to an integration over the

surface of a spherical volume with radius r. Letting r - -, the pair

probability and its spatial derivative decay to zero, so Equation C.5 is zero.

The second tenn in Equation C.4 simplifies to:

_ý1 D>
V P-Ds p.idr,: -<V;> r __(C.6)Lk iý r r
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after an application of the divergence theorem to the diffusive flux part of

the equation.

Combining the results from Equations C.3 and C.6 the evolution

equation for the average particle separation distance is obtained as:

a - a / 0 (C.7)

Equation C.7 shows that unless the time derivative of the particle

separation vector exactly balances the divergence of the diffusion

coefficient, the drift velocity will have a non-zero value. In Section C.2.3

an explicit expression for the drift velocity is obtained which matches that

obtained in Chapter 3 using an alternative derivation.

C.2.2 Second moment equation

Multiplying Equation C. 1 by rkrl and averaging over all particle

separation vectors, r, gives:

fr ap 1 faI=Od
J ki atl + rkrl r.i = 0}d (C.8)

Using the divergence theorem repeatedly and assuming the pair probability

goes to zero at large separations yields:

Sa<rkr> (C.9)
2 at
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As expected, the pair diffusivity tensor is related to the time derivative of

the mean square displacement (Russel et al., 1989). Equation C.9 can be

re-expressed in terms of the two-time velocity autocorrelation function.

First, writing the particle position as a time integral over the particle

velocity yields:

t

rk = rk(O) + f Pk(t')dt' (C.10)
0

where the overdot indicates a time derivative. Equation C.9 is simplified

by taking the time derivative inside the ensemble average and substituting

in Equation C.10. As a result, Equation C.9 becomes:

t

DfI = ( Pk(t) P#) )dt' (C.11)
0

where the overdot indicates a time derivative and terms dependent on the

initial particle separation are eliminated because of the assumed spatial

homogeneity of the particle number density. Equation C. 11 is identical to

the expression derived for the diffusion tensor in Chapter 3 (see Equation

3.13).

C.2.3 Drift velocity

The drift velocity given by Equation C.7 is the difference between

the average relative particle velocity and the divergence of the pair

diffusivity. A compact fonn for the drift velocity can be obtained in terms
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of the two-time velocity/acceleration correlation. First the mean particle

velocity is expanded as a linear function of position:

a<rk>
kt <rk> = (rl(t)Lkl(r(t))) (C.12)

where Lu is defined in Equation 3.21. Substituting Equation C.10 into

Equation C. 12 and keeping terms of order (xsF)2 yields:
t

<Tk> = (rJ(O)L,.(r(t))) + fQ(.(t')Lk,(r(t)))dt' (C.13)
0

The first term in Equation C. 13 is zero because rj(O) is constant and the

mean particle velocity gradient is zero. Assuming t is much greater than

the correlation times of the flow, the lower limit of integration can be

replaced with -o- giving,

t

<pk> f= •.(t)L.(r(t)))dt' (C.14)

Taking the divergence of Equation C. 11 gives,

jk -f= (Pk(t)Lý.(r(t'))) + }.t)L.(r(t) dt (C.15)

J -00

Finally, subtracting Equation C. 15 from C. 14 gives the final expression for

the drift velocity:
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t

Equation C. 16 is identical to the drift velocity given by Equation 3.12 in

Chapter 3.
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APPENDIX D:

THE SECOND ORDER STATISTICS OF rij(t)

An isotropic fluctuating velocity gradient characterized by separate

strain and rotation rate correlation times is assumed. Mean flow is ignored

so that the expectation of 'ij(t) is zero, where rij(t) is the fluctuating

velocity gradient tensor. The velocity gradient tensor is separated into its-

symmetric and antisymmetric parts so that the strain and rotation rates are

decoupled along with their time scales:

tp(t) = sp(t) + Ru(t) (D.1)

where Sij(t) is the strain rate tensor and Rij(t) is the rotation rate tensor.

In the following analysis all times and velocity gradients have been

scaled with their Kolnogorov values. Assuming stationary turbulence, the

two-time correlation for Fii(t) is written as:

<F-k(O)lý 1.(t)> = <Sk(O)Sj/(t)> + <Rj()Ril(t)> (D.2)

where the cross-correlation terms, such as <Sik(0)Rjh(t)>, are zero due to

isotropy. Angle brackets, <>, denote ensemble averaging over the sample

space of the random variable.

Velocity gradient autocorrelation data obtained from direct

numerical simulations of turbulence (DNS; Girimaji & Pope, 1990) and the

properties of isotropic fourth order tensors are used to deduce relationships

for the strain and rotation rate autocorrelation functions. The strain rate
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correlation function decays exponentially with a characteristic decay time,

ts, of 2.3-c,, (Girimaji & Pope, 1990):

<Sik(O)Sjl(t)> = Sýi,.exp( -J (D.3)

where the fourth order tensor Sikjl is the covariance of the strain rate and C,•

is the Kolmogorov time scale (characteristic time of the smallest turbulent

eddies). Non-linear regression of Girimaji & Pope's simulation data

(1990) shows that the exponential form given in Equation D.3 fits the data

with an r2 = 99.6%. Sjkj1 is written as a fourth order isotropic tensor that

depends on three scalar coefficients. The numerical coefficients are

obtained by applying symmetry, Sikji = Sk1 , continuity, Sijjj = Sikj = 0, and

dissipation rate, Sijij = 0.5. The final form for the strain rate covariance is:

-20 L[ ki i -k 2 i'ki (D.4)Sivf = 1 8 Y kl + 8 il•)3k - 7 ýl(A

The rotation rate correlation function is obtained using a similar
analysis to yield:

<R= Rlexp (D.5)
" R)

where:

Rik.l = [8.)kl - )il5jk] (D.6)
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and TR is the rotation rate correlation time with a value estimated to be

about 7.241 (Girimaji & Pope, 1990). The exponential form for the

autocorrelation finction fits the DNS data with an r2 of 95%. The form of

Equation D.6 is set by applying antisymmetry RikIl = -Rkjl, continuity, Riij,

= Rjký = 0, and dissipation rate, Rijij = 0.5. The last statement comes from

the evolution equation for the mean square vorticity fluctuations and is

valid for large Reynolds numbers (Tennekes & Lumley, 1972).

The complete expression for the autocorrelation finction of the

velocity gradient tensor is

<r~k(o) Pr,p)> = Si11exp ( ) + RA)Iexp ( )(D.7)
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APPENDIX E:

PROGRAM LISTINGS

A description of computer programs used to calculate colloidal

stability in the random linear flow field (Chapter 3) and dynamic

simulations of coagulation in Gaussian isotropic turbulence (Chapter 4)

follow.

E. 1 Stability factor for coagulation in a random linear flow field (Chapter 3)

The program for calculating the stability factor, termed

WCALC.EXE, has been written for a DOS or Windows based computer.

The user is prompted for the non-dimensional parameters governing the

system (see Table 3.2). One parameter of the users choosing can be

interated over a user specified range. Output in the form of a comma-

delimited file is placed in a user specified data file.

E. 1.1 Execution instructions

WCALC is executed by typing wcalc.exe at the DOS command

prompt and hitting the Enter key on the keyboard. The program first

prompts the user for the name of an output data file. A valid 8 character

file name should be typed in followed by Enter. (The program will append

the file extension.txt). This colmna delimited output file is stored in the

subdirectory DATA. Next, the user is prompted to enter the desired values

for the non-dimensional parameters listed in Table 3.1. In order as listed in

the program, these include: NL, NF, NR, K', and ND, where ND is l/Pe. The
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program allows the user to vary one of the above parameters during

execution. The next prompt lets the user pick the parameter to be varied.

Following that, the maximum (it can also be the minimum) value of the

varied parameter to input. The number of intervals between the minimum

and maximum for the varied parameter may be selected as well as whether

to use logrithmnic or linear intervals.

Once the parameters have been input, the program integrates the

numerical data. Intermediate results are summarized on the screen (all

results are placed in the user specified data file).

E. 1.2 Output data file structure

A sample data file is listed in Table E. 1. The first two lines provide

information identifying the program, author, revision data and version

number of the program. Line three lists the headings for the remaining

columns of numerical data, including: P2, the value of the integrating factor

at the secondary minimum; W2, the stability factor at the secondary

minimum; Alpha2, the collision efficiency at the secondary minimum;

Pmin, the integrating factor at the primary minimum; Wmin, the stability

factor at the primary minimum; and, Alpha_min, the collision efficiency at

the primary minimum. The remaining lines list numerical data for each

specified value of the non-dimensional parameters.

E. 1.3 Implementation of the hydrodynamic interactions

Hydrodynamic interactions are obtained from the tables provided by

Kim & Karrila (1991). They provide series solutions to the hydrodynamic

interactions in the near and far field. The coefficients in the series
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expansions are a function of the particle radius and WCALC uses spline

interpolation to obtain the correct coefficients for the user specified particle

radius ratio. These tables of coefficients have been pre-processed by the

routine spline in MODEL60.CPP (see Section E. 1.2 below and Press et al.,

1992 for details on the spline interpolation method used in this work).

E. 1.4 Directory locations

As written WCALC.EXE assumes specific directory locations for

the tabulated hydrodynamic interaction functions and output data files. If

"." denotes the directory containing WCALC.EXE and ".." denotes the

parent directory, then output data files are placed in ./data with a default

file extension of.txt. The program assumes that the tabulated

hydrodynamic interaction functions can be found in ../interp-1/hydrodat.

E. 1.5 Description of code modules used to build WCALC.EXE

The following C++ files make up the code required to compute the

stability factor integral presented in Chapter 3.

WCALC9.CPP calculates the stability factor for particles in a

random linear flow. It includes subroutines for the integrating factor and

stability factor given by Equations 3.45 and 3.47, respectively.

MODEL60.CPP contains subroutines used in the main program,

WCALC9.CPP. Among the algorithlns included are routines for opening

data files, a generic 5 th order Runge-Kutta routine and a spline interpolation

algorithm.

MODEL50.H is the header file for MODEL60.CPP containing

definitions of constants and subroutines found in MODEL60.CPP. A
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detailed listing of subroutines and their usage may be found in

MODEL50.H.

INTFOR3.CPP contains subroutines related to calculating

interparticle forces, interparticle potentials and hydrodynamic mobility

functions.

INTFOR3.H is the header file for INTFOR3.CPP containing

definitions of constants and subroutines found in INTFOR3.CPP.

E.2 Dynamic simulation of coagulation in Gaussian isotropic turbulence

without interparticle forces

The program for calculating the coagulation rate in Gaussian

isotropic turbulence in the absence of interparticle forces, termed

FLOCSIM.EXE, has been written for a DOS or Windows based computer.

The user is prompted for the name of a configuration file and output data

file. Output in the fonr of a commna-delimited file is placed in a user

specified data file. In addition, the program gives the option of storing the

position of one particle during the simulation.

E.2.1 Execution instructions

FLOCSIM is run by typing FLOCSIMEXE at the DOS prompt and

pressing the Enter key on the keyboard. Optionally the program can be

written with command line parameters: FLOCSIMEXE

(CONFIGURATION FILE: *. CFG} (NUMBER OF REALIZATION: #]

(OUTPUT DATA ON PARTICLE POSITIONS: Y/N). If these items are

not specified on the command line the program will prompt the user for
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them. The configuration file is assumed to be in the DATA subdirectory.

An output comma delimited text file is created (or appended) with the same

name as the configuration file but with a. txt file extension. Output data on

particle positions is stored similarly but the file extension is .pos. The

content of the configuration file is detailed below.

Once the configuration file is successfully read the program begins

simulating a realization of the flow. Intermediate results are shown on the

screen (more detailed results are placed in the output file).

E.2.2 Output data file structure

A sample output file is shown in Table E.2 The first two lines

provide information about the program, author and version number. Line

three shows the configuration file used to obtain the simulation results

tabulated in the rest of the file.

Lines three and four summarize the material present in the

configuration file, including: Rcutoff, the location of the outer simulation

boundary; Fmax, the maximum normalized flux used to calculate the

probability of creating a new particle; N, the number of Fourier modes in

the representation of the velocity field; Realization, irrelevant in this

version; Max Timestep, irrelevant in this version; seedl and seed2,

irrelevant in this version; Tcutoff, characteristic time for a particle to travel

from the outer to inner computational boundary; Tstrain, value of the total

strain; Trotation, value of the total rotation. Next, column headings for the
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realizations are given. These headers include: time, the realization that is

being summarized; <Qo>, average particle flow rate at the outer simulation

boundary; •<Qr>, average particle flow rate at the inner simulation

boundary; k, computed coagulation rate constant; %Survive, percentage of

particles that coagulate with the test sphere; Max DT, maximum time step

used in the realization; Nannilated, number of particles that escape to the

outer simulation boundary; t avg, average time that a particle lasts in the

computer simulation; tr avg, average time it takes for a particle to traverse

the simulation domain; t max, maximum lifetime of a particle in the

simulation; seedl, value of the first random number generator seed at the

end of the realization; seed2, value of the second random number generator

seed at the end of the realization. Following seed2, the numbers of the

mid-points of intervals used to calculate the average concentration in the

realization are listed.

Results from each realization are tabulated below the column

headings.

E.2.3 Directory locations

As written, FLOCSIM.EXE assumes specific directory locations for

the tabulated hydrodynamic interaction functions and output data files. If

"." denotes the directory containing FLOCSIM.EXE and ".." denotes the

parent directory, then output data files are placed in ./data with a default

file extension of. txt. Configuration files are located in ./data.
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E.2.4 Sample configuration file

Configuration files for FLOCSIM.EXE have a file extension of. cfg

and have the following form:

Line# File contents

1 flocsim 5.30

2 postlk.cfg : configuration file for flocsim.cpp

3 1000.000000

4 Rate of strain correlation time

5 1000.000000

6 Rate of rotation correlation time

7 10.000000

8 Cutoff radius in units of particle diameter

9 250

10 Number of elements in Fourier series

11 0.270000

12 Maximum volumetric flux (i.e., UiNi)

13 4

14 Current realization of simulation

15 442038164

16 Seedl for the random number generators

17 731162732

18 Seed2 for the random number generators

19 50

20 Number of bins in concentration profile
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E.2.5 Description of code modules used to build FLOCSIM.EXE

The C++ files listed below constitute the code required to run the

simulations of coagulation in turbulence detailed in Chapter 4.

FWIF53.CPP is the main program for computing turbulent

coagulation with interparticle forces. It contains the code for generating a

Gaussian random linear flow with separate strain and rotation rate

correlation times. Also included in the program are subroutines for moving

particles, maintaining a constant concentration boundary condition at the

outer simulation boundary, computing the pair probability distribution and

calculating the flux of particles incident on the test sphere.

RANDOM.CPP contains subroutines for generating uniforn and

Gaussian random numbers. In addition, an algorithm for detennining a

random vector on the unit sphere is included.

RANDOM.H is the header file for RANDOM.CPP containing

function declarations and definitions of routines found in RANDOM.CPP.

The following files contain routines and support programs for

generating random numbers using algorithms compiled by NETLIB

(program listings and a description of the algorithms can be found on

NETLIB, www.att.com): COM.CPP, LINPACK.CPP, RANLIB.CPP,

RANLIB.H. Subroutines in RANLIB.CPP were used to generate uniform

random numbers using two user chosen seed values. As these are public

domain programs, they are not reproduced in this thesis.
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The C++ files, MODEL50.CPP, MODEL40.H, INTFOR3.CPP and

INTFOR3.H described in Section E. 1 were also used in the computer

simulation of coagulation in Gaussian isotropic turbulence.

E.3 Dynamic simulation of coagulation in Gaussian isotropic turbulence

with interparticle forces

The program for calculating the coagulation rate in Gaussian

isotropic turbulence in the absence of interparticle forces, termed

FWIF.EXE, has been written for a DOS or Windows based computer. The

program is almost idential to FLOCSIM.EXE. The user is prompted for

the name of a configuration file and output data file. Output in the form of

a comma-delimited file is placed in a user specified data file. In addition

the program gives the option of outputing the position of one particle

during the simulation.

E.3.1 Program execution

The program is run by typing FWIF.EXE at the DOS command

prompt and pressing Enter on the keyboard. Command line prompts are

identical to those used in FLOCSIM.EXE. Output is placed in a comma

deliminated data file with the same file name as the configuration file but

with a. txt file extension.

E.3.2 Output data file structure

The data file has the same structure as that used for FLOCSIM.EXE.
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E.3.3 Warning

The user should be aware of two problems with the current version

of the program. First, the code is using an old version of the non-

dimensional parameters. Before compiling FWIF with the current versions

of MODEL50.CPP, MODEL40.H, INTFOR3.CPP and 1NTFOR3.H the

formulas used to compute the relative particle velocity should be validated.

In addition, the program currently takes NF, not Ns, as input for the ratio of

viscous forces to van der Waals forces where the total strain in NF is taken

to be 2.3. It is recommended that these two issues be fixed before further

simulations are conducted.

E.3.4 Directory locations

As written FWIF.EXE assumes specific directory locations for the

tabulated hydrodynamic interaction functions and output data files. If"."

denotes the directory containing FWI.EXE and ".." denotes the parent

directory, then output data files are placed in ./data with a default file

extension of. txt. The program assumes that the tabulated hydrodynamic

interaction functions can be found in ../interp-1/hydrodat. Configuration

files are located in ./data.

E.3.5 Sample configuration file

Configuration files for FWIF.EXE have a file extension of. cfg and

have the following fonn:

Line# File contents

1 flocwif 2.00

2 4ns8.cfg : configuration file for flocwif.cpp
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3 2.300000

4 Rate of strain correlation time

5 7.200000

6 Rate of rotation correlation time

7 5.000000

8 Cutoff radius in units of particle diameter

9 200

10 Number of elements in Fourier series

11 0.270000

12 Maximum volumetric flux (i.e., UiNi)

13 253.000000

14 NI: ratio of particle radius to London retardation wavelength

15 1.000000

16 lambda: particle radius ratio

17 0.000076

18 Nf: ratio of hydrodynamic repulsion to vdw attraction

19 0.000000

20 Nr: Electrostatic repulsion to vdw attraction

21 1.000000

22 Khat: London wavelength to Debye length

23 101

24 Current realization of simulation

25 85859375

26 Seedl for the random number generators
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27 1172590394

28 Seed2 for the random number generators

29 50

30 Number of bins in concentration profile

E.3.6 Description of code modules used to build FLOCSIM.EXE

The same C++ files used to build FLOCSIM.EXE are used for

FWIF.EXE except that FWIF.53.CPP is replaced with FWIF20.C.

FWIF.H is the header file for FWIF53.CPP containing function

definitions and revision history.
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